HomeHome Metamath Proof Explorer
Theorem List (p. 358 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 35701-35800   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremlcfl8b 35701* Property of a nonzero functional with a closed kernel. (Contributed by NM, 4-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑌 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺 ∈ (𝐶 ∖ {𝑌}))       (𝜑 → ∃𝑥 ∈ (𝑉 ∖ { 0 })( ‘(𝐿𝐺)) = (𝑁‘{𝑥}))
 
Theoremlcfl9a 35702 Property implying that a functional has a closed kernel. (Contributed by NM, 16-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)    &   (𝜑𝑋𝑉)    &   (𝜑 → ( ‘{𝑋}) ⊆ (𝐿𝐺))       (𝜑 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))
 
Theoremlclkrlem1 35703* The set of functionals having closed kernels is closed under scalar product. (Contributed by NM, 28-Dec-2014.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    · = ( ·𝑠𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐵)    &   (𝜑𝐺𝐶)       (𝜑 → (𝑋 · 𝐺) ∈ 𝐶)
 
Theoremlclkrlem2a 35704 Lemma for lclkr 35730. Use lshpat 33251 to show that the intersection of a hyperplane with a noncomparable sum of atoms is an atom. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → ( ‘{𝑋}) ≠ ( ‘{𝑌}))    &   (𝜑 → ¬ 𝑋 ∈ ( ‘{𝐵}))       (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘{𝐵})) ∈ 𝐴)
 
Theoremlclkrlem2b 35705 Lemma for lclkr 35730. (Contributed by NM, 17-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → ( ‘{𝑋}) ≠ ( ‘{𝑌}))    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))       (𝜑 → (((𝑁‘{𝑋}) (𝑁‘{𝑌})) ∩ ( ‘{𝐵})) ∈ 𝐴)
 
Theoremlclkrlem2c 35706 Lemma for lclkr 35730. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → ( ‘{𝑋}) ≠ ( ‘{𝑌}))    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   𝐽 = (LSHyp‘𝑈)       (𝜑 → ((( ‘{𝑋}) ∩ ( ‘{𝑌})) (𝑁‘{𝐵})) ∈ 𝐽)
 
Theoremlclkrlem2d 35707 Lemma for lclkr 35730. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → ( ‘{𝑋}) ≠ ( ‘{𝑌}))    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   𝐼 = ((DIsoH‘𝐾)‘𝑊)       (𝜑 → ((( ‘{𝑋}) ∩ ( ‘{𝑌})) (𝑁‘{𝐵})) ∈ ran 𝐼)
 
Theoremlclkrlem2e 35708 Lemma for lclkr 35730. The kernel of the sum is closed when the kernels of the summands are equal and closed. (Contributed by NM, 17-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐸) = (𝐿𝐺))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2f 35709 Lemma for lclkr 35730. Construct a closed hyperplane under the kernel of the sum. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝐿𝐸) ≠ (𝐿𝐺))    &   (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽)       (𝜑 → (((𝐿𝐸) ∩ (𝐿𝐺)) (𝑁‘{𝐵})) ⊆ (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2g 35710 Lemma for lclkr 35730. Comparable hyperplanes are equal, so the kernel of the sum is closed. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝐿𝐸) ≠ (𝐿𝐺))    &   (𝜑 → (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽)       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2h 35711 Lemma for lclkr 35730. Eliminate the (𝐿‘(𝐸 + 𝐺)) ∈ 𝐽 hypothesis. (Contributed by NM, 16-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝐿𝐸) ≠ (𝐿𝐺))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2i 35712 Lemma for lclkr 35730. Eliminate the (𝐿𝐸) ≠ (𝐿𝐺) hypothesis. (Contributed by NM, 17-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2j 35713 Lemma for lclkr 35730. Kernel closure when 𝑌 is zero. (Contributed by NM, 18-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌 = 0 )       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2k 35714 Lemma for lclkr 35730. Kernel closure when 𝑋 is zero. (Contributed by NM, 18-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋 = 0 )    &   (𝜑𝑌𝑉)       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2l 35715 Lemma for lclkr 35730. Eliminate the 𝑋0, 𝑌0 hypotheses. (Contributed by NM, 18-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &    0 = (0g𝑈)    &    = (LSSum‘𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐽 = (LSHyp‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐵 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝐵) = 𝑄)    &   (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2m 35716 Lemma for lclkr 35730. Construct a vector 𝐵 that makes the sum of functionals zero. Combine with 𝐵𝑉 to shorten overall proof. (Contributed by NM, 17-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑𝑈 ∈ LVec)    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )       (𝜑 → (𝐵𝑉 ∧ ((𝐸 + 𝐺)‘𝐵) = 0 ))
 
Theoremlclkrlem2n 35717 Lemma for lclkr 35730. (Contributed by NM, 12-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   (𝜑𝑈 ∈ LVec)    &   (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )       (𝜑 → (𝑁‘{𝑋, 𝑌}) ⊆ (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2o 35718 Lemma for lclkr 35730. When 𝐵 is nonzero, the vectors 𝑋 and 𝑌 can't both belong to the hyperplane generated by 𝐵. (Contributed by NM, 17-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )    &   (𝜑𝐵 ≠ (0g𝑈))       (𝜑 → (¬ 𝑋 ∈ ( ‘{𝐵}) ∨ ¬ 𝑌 ∈ ( ‘{𝐵})))
 
Theoremlclkrlem2p 35719 Lemma for lclkr 35730. When 𝐵 is zero, 𝑋 and 𝑌 must colinear, so their orthocomplements must be comparable. (Contributed by NM, 17-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )    &   (𝜑𝐵 = (0g𝑈))       (𝜑 → ( ‘{𝑌}) ⊆ ( ‘{𝑋}))
 
Theoremlclkrlem2q 35720 Lemma for lclkr 35730. The sum has a closed kernel when 𝐵 is nonzero. (Contributed by NM, 18-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )    &   (𝜑𝐵 ≠ (0g𝑈))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2r 35721 Lemma for lclkr 35730. When 𝐵 is zero, i.e. when 𝑋 and 𝑌 are colinear, the intersection of the kernels of 𝐸 and 𝐺 equal the kernel of 𝐺, so the kernels of 𝐺 and the sum are comparable. (Contributed by NM, 18-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )    &   (𝜑𝐵 = (0g𝑈))       (𝜑 → (𝐿𝐺) ⊆ (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2s 35722 Lemma for lclkr 35730. Thus, the sum has a closed kernel when 𝐵 is zero. (Contributed by NM, 18-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   𝐵 = (𝑋 ((((𝐸 + 𝐺)‘𝑋) × (𝐼‘((𝐸 + 𝐺)‘𝑌))) · 𝑌))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )    &   (𝜑𝐵 = (0g𝑈))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2t 35723 Lemma for lclkr 35730. We eliminate all hypotheses with 𝐵 here. (Contributed by NM, 18-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) ≠ 0 )       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2u 35724 Lemma for lclkr 35730. lclkrlem2t 35723 with 𝑋 and 𝑌 swapped. (Contributed by NM, 18-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑋) ≠ 0 )       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2v 35725 Lemma for lclkr 35730. When the hypotheses of lclkrlem2u 35724 and lclkrlem2u 35724 are negated, the functional sum must be zero, so the kernel is the vector space. We make use of the law of excluded middle, dochexmid 35665, which requires the orthomodular law dihoml4 35574 (Lemma 3.3 of [Holland95] p. 214). (Contributed by NM, 16-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )       (𝜑 → (𝐿‘(𝐸 + 𝐺)) = 𝑉)
 
Theoremlclkrlem2w 35726 Lemma for lclkr 35730. This is the same as lclkrlem2u 35724 and lclkrlem2u 35724 with the inequality hypotheses negated. When the sum of two functionals is zero at each generating vector, the kernel is the vector space and therefore closed. (Contributed by NM, 16-Jan-2015.)
𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &    = (-g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = (LSSum‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))    &   (𝜑 → ((𝐸 + 𝐺)‘𝑋) = 0 )    &   (𝜑 → ((𝐸 + 𝐺)‘𝑌) = 0 )       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2x 35727 Lemma for lclkr 35730. Eliminate by cases the hypotheses of lclkrlem2u 35724, lclkrlem2u 35724 and lclkrlem2w 35726. (Contributed by NM, 18-Jan-2015.)
𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)    &   (𝜑𝑌𝑉)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → (𝐿𝐸) = ( ‘{𝑋}))    &   (𝜑 → (𝐿𝐺) = ( ‘{𝑌}))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2y 35728 Lemma for lclkr 35730. Restate the hypotheses for 𝐸 and 𝐺 to say their kernels are closed, in order to eliminate the generating vectors 𝑋 and 𝑌. (Contributed by NM, 18-Jan-2015.)
𝐿 = (LKer‘𝑈)    &   𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑 → ( ‘( ‘(𝐿𝐸))) = (𝐿𝐸))    &   (𝜑 → ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺))       (𝜑 → ( ‘( ‘(𝐿‘(𝐸 + 𝐺)))) = (𝐿‘(𝐸 + 𝐺)))
 
Theoremlclkrlem2 35729* The set of functionals having closed kernels is closed under vector (functional) addition. Lemmas lclkrlem2a 35704 through lclkrlem2y 35728 are used for the proof. Here we express lclkrlem2y 35728 in terms of membership in the set 𝐶 of functionals with closed kernels. (Contributed by NM, 18-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐸𝐶)    &   (𝜑𝐺𝐶)       (𝜑 → (𝐸 + 𝐺) ∈ 𝐶)
 
Theoremlclkr 35730* The set of functionals with closed kernels is a subspace. Part of proof of Theorem 3.6 of [Holland95] p. 218, line 20, stating "The fM that arise this way generate a subspace F of E'". Our proof was suggested by Mario Carneiro, 5-Jan-2015. (Contributed by NM, 18-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑆 = (LSubSp‘𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶𝑆)
 
Theoremlcfls1lem 35731* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.)
𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}       (𝐺𝐶 ↔ (𝐺𝐹 ∧ ( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
 
Theoremlcfls1N 35732* Property of a functional with a closed kernel. (Contributed by NM, 27-Jan-2015.) (New usage is discouraged.)
𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}    &   (𝜑𝐺𝐹)       (𝜑 → (𝐺𝐶 ↔ (( ‘( ‘(𝐿𝐺))) = (𝐿𝐺) ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄)))
 
Theoremlcfls1c 35733* Property of a functional with a closed kernel. (Contributed by NM, 28-Jan-2015.)
𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}    &   𝐷 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}       (𝐺𝐶 ↔ (𝐺𝐷 ∧ ( ‘(𝐿𝐺)) ⊆ 𝑄))
 
Theoremlclkrslem1 35734* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 27-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    · = ( ·𝑠𝐷)    &   𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝑆)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐵)       (𝜑 → (𝑋 · 𝐺) ∈ 𝐶)
 
Theoremlclkrslem2 35735* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. (Contributed by NM, 28-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝑅)    &    · = ( ·𝑠𝐷)    &   𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑄)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝑆)    &   (𝜑𝐺𝐶)    &    + = (+g𝐷)    &   (𝜑𝐸𝐶)       (𝜑 → (𝐸 + 𝐺) ∈ 𝐶)
 
Theoremlclkrs 35736* The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑅 is a subspace of the dual space. TODO: This proof repeats large parts of the lclkr 35730 proof. Do we achieve overall shortening by breaking them out as subtheorems? Or make lclkr 35730 a special case of this? (Contributed by NM, 29-Jan-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑓𝐹 ∣ (( ‘( ‘(𝐿𝑓))) = (𝐿𝑓) ∧ ( ‘(𝐿𝑓)) ⊆ 𝑅)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑆)       (𝜑𝐶𝑇)
 
Theoremlclkrs2 35737* The set of functionals with closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is a subspace of the dual space containing functionals with closed kernels. Note that 𝑅 is the value given by mapdval 35825. (Contributed by NM, 12-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝑅 = {𝑔𝐹 ∣ (( ‘( ‘(𝐿𝑔))) = (𝐿𝑔) ∧ ( ‘(𝐿𝑔)) ⊆ 𝑄)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑄𝑆)       (𝜑 → (𝑅𝑇𝑅𝐶))
 
TheoremlcfrvalsnN 35738* Reconstruction from the dual space span of a singleton. (Contributed by NM, 19-Feb-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑁 = (LSpan‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝐹)    &   𝑄 = 𝑓𝑅 ( ‘(𝐿𝑓))    &   𝑅 = (𝑁‘{𝐺})       (𝜑𝑄 = ( ‘(𝐿𝐺)))
 
Theoremlcfrlem1 35739 Lemma for lcfr 35782. Note that 𝑋 is z in Mario's notes. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    · = ( ·𝑠𝐷)    &    = (-g𝐷)    &   (𝜑𝑈 ∈ LVec)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝐺𝑋) ≠ 0 )    &   𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))       (𝜑 → (𝐻𝑋) = 0 )
 
Theoremlcfrlem2 35740 Lemma for lcfr 35782. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    · = ( ·𝑠𝐷)    &    = (-g𝐷)    &   (𝜑𝑈 ∈ LVec)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝐺𝑋) ≠ 0 )    &   𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))    &   𝐿 = (LKer‘𝑈)       (𝜑 → ((𝐿𝐸) ∩ (𝐿𝐺)) ⊆ (𝐿𝐻))
 
Theoremlcfrlem3 35741 Lemma for lcfr 35782. (Contributed by NM, 27-Feb-2015.)
𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &    × = (.r𝑆)    &    0 = (0g𝑆)    &   𝐼 = (invr𝑆)    &   𝐹 = (LFnl‘𝑈)    &   𝐷 = (LDual‘𝑈)    &    · = ( ·𝑠𝐷)    &    = (-g𝐷)    &   (𝜑𝑈 ∈ LVec)    &   (𝜑𝐸𝐹)    &   (𝜑𝐺𝐹)    &   (𝜑𝑋𝑉)    &   (𝜑 → (𝐺𝑋) ≠ 0 )    &   𝐻 = (𝐸 (((𝐼‘(𝐺𝑋)) × (𝐸𝑋)) · 𝐺))    &   𝐿 = (LKer‘𝑈)       (𝜑𝑋 ∈ (𝐿𝐻))
 
Theoremlcfrlem4 35742* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝑋𝐸)       (𝜑𝑋𝑉)
 
Theoremlcfrlem5 35743* Lemma for lcfr 35782. The set of functionals having closed kernels and majorizing the orthocomplement of a given subspace 𝑄 is closed under scalar product. TODO: share hypotheses with others. Use more consistent variable names here or elsewhere when possible. (Contributed by NM, 5-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑆 = (LSubSp‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑆)    &   𝑄 = 𝑓𝑅 ( ‘(𝐿𝑓))    &   (𝜑𝑋𝑄)    &   𝐶 = (Scalar‘𝑈)    &   𝐵 = (Base‘𝐶)    &    · = ( ·𝑠𝑈)    &   (𝜑𝐴𝐵)       (𝜑 → (𝐴 · 𝑋) ∈ 𝑄)
 
Theoremlcfrlem6 35744* Lemma for lcfr 35782. Closure of vector sum with colinear vectors. TODO: Move down 𝑁 definition so top hypotheses can be shared. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &   (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem7 35745* Lemma for lcfr 35782. Closure of vector sum when one vector is zero. TODO: share hypotheses with others. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑𝑋𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑌 = 0 )       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem8 35746* Lemma for lcf1o 35748 and lcfr 35782. (Contributed by NM, 21-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝐽𝑋) = (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑋})𝑣 = (𝑤 + (𝑘 · 𝑋)))))
 
Theoremlcfrlem9 35747* Lemma for lcf1o 35748. (This part has undesirable $d's on 𝐽 and 𝜑 that we remove in lcf1o 35748.) TODO: ugly proof; maybe have better subtheorems or abbreviate some 𝑘 expansions with 𝐽𝑧? TODO: Some redundant $d's? (Contributed by NM, 22-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
 
Theoremlcf1o 35748* Define a function 𝐽 that provides a bijection from nonzero vectors 𝑉 to nonzero functionals with closed kernels 𝐶. (Contributed by NM, 22-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐽:(𝑉 ∖ { 0 })–1-1-onto→(𝐶 ∖ {𝑄}))
 
Theoremlcfrlem10 35749* Lemma for lcfr 35782. (Contributed by NM, 23-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝐽𝑋) ∈ 𝐹)
 
Theoremlcfrlem11 35750* Lemma for lcfr 35782. (Contributed by NM, 23-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝐿‘(𝐽𝑋)) = ( ‘{𝑋}))
 
Theoremlcfrlem12N 35751* Lemma for lcfr 35782. (Contributed by NM, 23-Feb-2015.) (New usage is discouraged.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   𝐵 = (0g𝑆)    &   (𝜑𝑌 ∈ ( ‘{𝑋}))       (𝜑 → ((𝐽𝑋)‘𝑌) = 𝐵)
 
Theoremlcfrlem13 35752* Lemma for lcfr 35782. (Contributed by NM, 8-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑 → (𝐽𝑋) ∈ (𝐶 ∖ {𝑄}))
 
Theoremlcfrlem14 35753* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   𝑁 = (LSpan‘𝑈)       (𝜑 → ( ‘(𝐿‘(𝐽𝑋))) = (𝑁‘{𝑋}))
 
Theoremlcfrlem15 35754* Lemma for lcfr 35782. (Contributed by NM, 9-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))       (𝜑𝑋 ∈ ( ‘(𝐿‘(𝐽𝑋))))
 
Theoremlcfrlem16 35755* Lemma for lcfr 35782. (Contributed by NM, 8-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &    0 = (0g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (0g𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   𝑃 = (LSubSp‘𝐷)    &   (𝜑𝐺𝑃)    &   (𝜑𝐺𝐶)    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑𝑋 ∈ (𝐸 ∖ { 0 }))       (𝜑 → (𝐽𝑋) ∈ 𝐺)
 
Theoremlcfrlem17 35756 Lemma for lcfr 35782. Condition needed more than once. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑋 + 𝑌) ∈ (𝑉 ∖ { 0 }))
 
Theoremlcfrlem18 35757 Lemma for lcfr 35782. (Contributed by NM, 24-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → ( ‘{𝑋, 𝑌}) = (( ‘{𝑋}) ∩ ( ‘{𝑌})))
 
Theoremlcfrlem19 35758 Lemma for lcfr 35782. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}) ∨ ¬ 𝑌 ∈ ( ‘{(𝑋 + 𝑌)})))
 
Theoremlcfrlem20 35759 Lemma for lcfr 35782. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   (𝜑 → ¬ 𝑋 ∈ ( ‘{(𝑋 + 𝑌)}))       (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ 𝐴)
 
Theoremlcfrlem21 35760 Lemma for lcfr 35782. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)})) ∈ 𝐴)
 
Theoremlcfrlem22 35761 Lemma for lcfr 35782. (Contributed by NM, 24-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))       (𝜑𝐵𝐴)
 
Theoremlcfrlem23 35762 Lemma for lcfr 35782. TODO: this proof was built from other proof pieces that may change 𝑁‘{𝑋, 𝑌} into subspace sum and back unnecessarily, or similar things. (Contributed by NM, 1-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    = (LSSum‘𝑈)       (𝜑 → (( ‘{𝑋, 𝑌}) 𝐵) = ( ‘{(𝑋 + 𝑌)}))
 
Theoremlcfrlem24 35763* Lemma for lcfr 35782. (Contributed by NM, 24-Feb-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)       (𝜑 → ( ‘{𝑋, 𝑌}) = ((𝐿‘(𝐽𝑋)) ∩ (𝐿‘(𝐽𝑌))))
 
Theoremlcfrlem25 35764* Lemma for lcfr 35782. Special case of lcfrlem35 35774 when ((𝐽𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)    &   (𝜑𝐼0 )       (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿‘(𝐽𝑌)))
 
Theoremlcfrlem26 35765* Lemma for lcfr 35782. Special case of lcfrlem36 35775 when ((𝐽𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)    &   (𝜑𝐼0 )       (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿‘(𝐽𝑌))))
 
Theoremlcfrlem27 35766* Lemma for lcfr 35782. Special case of lcfrlem37 35776 when ((𝐽𝑌)‘𝐼) is zero. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) = 𝑄)    &   (𝜑𝐼0 )    &   (𝜑𝐺 ∈ (LSubSp‘𝐷))    &   (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem28 35767* Lemma for lcfr 35782. TODO: This can be a hypothesis since the zero version of (𝐽𝑌)‘𝐼 needs it. (Contributed by NM, 9-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)       (𝜑𝐼0 )
 
Theoremlcfrlem29 35768* Lemma for lcfr 35782. (Contributed by NM, 9-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)       (𝜑 → ((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼)) ∈ 𝑅)
 
Theoremlcfrlem30 35769* Lemma for lcfr 35782. (Contributed by NM, 6-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))       (𝜑𝐶 ∈ (LFnl‘𝑈))
 
Theoremlcfrlem31 35770* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))    &   (𝜑 → ((𝐽𝑋)‘𝐼) ≠ 𝑄)    &   (𝜑𝐶 = (0g𝐷))       (𝜑 → (𝑁‘{𝑋}) = (𝑁‘{𝑌}))
 
Theoremlcfrlem32 35771* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))    &   (𝜑 → ((𝐽𝑋)‘𝐼) ≠ 𝑄)       (𝜑𝐶 ≠ (0g𝐷))
 
Theoremlcfrlem33 35772* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))    &   (𝜑 → ((𝐽𝑋)‘𝐼) = 𝑄)       (𝜑𝐶 ≠ (0g𝐷))
 
Theoremlcfrlem34 35773* Lemma for lcfr 35782. (Contributed by NM, 10-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))       (𝜑𝐶 ≠ (0g𝐷))
 
Theoremlcfrlem35 35774* Lemma for lcfr 35782. (Contributed by NM, 2-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))       (𝜑 → ( ‘{(𝑋 + 𝑌)}) = (𝐿𝐶))
 
Theoremlcfrlem36 35775* Lemma for lcfr 35782. (Contributed by NM, 6-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))       (𝜑 → (𝑋 + 𝑌) ∈ ( ‘(𝐿𝐶)))
 
Theoremlcfrlem37 35776* Lemma for lcfr 35782. (Contributed by NM, 8-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &    + = (+g𝑈)    &    0 = (0g𝑈)    &   𝑁 = (LSpan‘𝑈)    &   𝐴 = (LSAtoms‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))    &   (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑄 = (0g𝑆)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))    &   (𝜑𝐼𝐵)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → ((𝐽𝑌)‘𝐼) ≠ 𝑄)    &   𝐹 = (invr𝑆)    &    = (-g𝐷)    &   𝐶 = ((𝐽𝑋) (((𝐹‘((𝐽𝑌)‘𝐼))(.r𝑆)((𝐽𝑋)‘𝐼))( ·𝑠𝐷)(𝐽𝑌)))    &   (𝜑𝐺 ∈ (LSubSp‘𝐷))    &   (𝜑𝐺 ⊆ {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)})    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem38 35777* Lemma for lcfr 35782. Combine lcfrlem27 35766 and lcfrlem37 35776. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐼0 )    &   𝑉 = (Base‘𝑈)    &    · = ( ·𝑠𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐽 = (𝑥 ∈ (𝑉 ∖ { 0 }) ↦ (𝑣𝑉 ↦ (𝑘𝑅𝑤 ∈ ( ‘{𝑥})𝑣 = (𝑤 + (𝑘 · 𝑥)))))       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem39 35778* Lemma for lcfr 35782. Eliminate 𝐽. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))    &   𝐵 = ((𝑁‘{𝑋, 𝑌}) ∩ ( ‘{(𝑋 + 𝑌)}))    &   (𝜑𝐼𝐵)    &   (𝜑𝐼0 )       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem40 35779* Lemma for lcfr 35782. Eliminate 𝐵 and 𝐼. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )    &   𝑁 = (LSpan‘𝑈)    &   (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem41 35780* Lemma for lcfr 35782. Eliminate span condition. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)    &    0 = (0g𝑈)    &   (𝜑𝑋0 )    &   (𝜑𝑌0 )       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfrlem42 35781* Lemma for lcfr 35782. Eliminate nonzero condition. (Contributed by NM, 11-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &    + = (+g𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑄 = (LSubSp‘𝐷)    &   𝐶 = {𝑓 ∈ (LFnl‘𝑈) ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝐸 = 𝑔𝐺 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐺𝑄)    &   (𝜑𝐺𝐶)    &   (𝜑𝑋𝐸)    &   (𝜑𝑌𝐸)       (𝜑 → (𝑋 + 𝑌) ∈ 𝐸)
 
Theoremlcfr 35782* Reconstruction of a subspace from a dual subspace of functionals with closed kernels. Our proof was suggested by Mario Carneiro, 20-Feb-2015. (Contributed by NM, 5-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑆 = (LSubSp‘𝑈)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   𝑇 = (LSubSp‘𝐷)    &   𝐶 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   𝑄 = 𝑔𝑅 ( ‘(𝐿𝑔))    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑅𝑇)    &   (𝜑𝑅𝐶)       (𝜑𝑄𝑆)
 
Syntaxclcd 35783 Extend class notation with vector space of functionals with closed kernels.
class LCDual
 
Definitiondf-lcdual 35784* Dual vector space of functionals with closed kernels. Note: we could also define this directly without mapd by using mapdrn 35846. TODO: see if it makes sense to go back and replace some of the LDual stuff with this. TODO: We could simplify df-mapd 35822 using (Base‘((LCDual‘𝐾)‘𝑊)). (Contributed by NM, 13-Mar-2015.)
LCDual = (𝑘 ∈ V ↦ (𝑤 ∈ (LHyp‘𝑘) ↦ ((LDual‘((DVecH‘𝑘)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝑘)‘𝑤)) ∣ (((ocH‘𝑘)‘𝑤)‘(((ocH‘𝑘)‘𝑤)‘((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝑘)‘𝑤))‘𝑓)})))
 
Theoremlcdfval 35785* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)       (𝐾𝑋 → (LCDual‘𝐾) = (𝑤𝐻 ↦ ((LDual‘((DVecH‘𝐾)‘𝑤)) ↾s {𝑓 ∈ (LFnl‘((DVecH‘𝐾)‘𝑤)) ∣ (((ocH‘𝐾)‘𝑤)‘(((ocH‘𝐾)‘𝑤)‘((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓))) = ((LKer‘((DVecH‘𝐾)‘𝑤))‘𝑓)})))
 
Theoremlcdval 35786* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → (𝐾𝑋𝑊𝐻))       (𝜑𝐶 = (𝐷s {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}))
 
Theoremlcdval2 35787* Dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐷 = (LDual‘𝑈)    &   (𝜑 → (𝐾𝑋𝑊𝐻))    &   𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}       (𝜑𝐶 = (𝐷s 𝐵))
 
Theoremlcdlvec 35788 The dual vector space of functionals with closed kernels is a left vector space. (Contributed by NM, 14-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶 ∈ LVec)
 
Theoremlcdlmod 35789 The dual vector space of functionals with closed kernels is a left module. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝐶 ∈ LMod)
 
Theoremlcdvbase 35790* Vector base set of a dual vector space of functionals with closed kernels. (Contributed by NM, 13-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &    = ((ocH‘𝐾)‘𝑊)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   𝐿 = (LKer‘𝑈)    &   𝐵 = {𝑓𝐹 ∣ ( ‘( ‘(𝐿𝑓))) = (𝐿𝑓)}    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑉 = 𝐵)
 
Theoremlcdvbasess 35791 The vector base set of the closed kernel dual space is a set of functionals. (Contributed by NM, 15-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑉𝐹)
 
Theoremlcdvbaselfl 35792 A vector in the base set of the closed kernel dual space is a functional. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝐶)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (LFnl‘𝑈)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝑉)       (𝜑𝑋𝐹)
 
Theoremlcdvbasecl 35793 Closure of the value of a vector (functional) in the closed kernel dual space. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑆 = (Scalar‘𝑈)    &   𝑅 = (Base‘𝑆)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐸 = (Base‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐸)    &   (𝜑𝑋𝑉)       (𝜑 → (𝐹𝑋) ∈ 𝑅)
 
Theoremlcdvadd 35794 Vector addition for the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &    + = (+g𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = (+g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = + )
 
Theoremlcdvaddval 35795 The value of the value of vector addition in the closed kernel vector space dual. (Contributed by NM, 10-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝑉 = (Base‘𝑈)    &   𝑅 = (Scalar‘𝑈)    &    + = (+g𝑅)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝐷 = (Base‘𝐶)    &    = (+g𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝐹𝐷)    &   (𝜑𝐺𝐷)    &   (𝜑𝑋𝑉)       (𝜑 → ((𝐹 𝐺)‘𝑋) = ((𝐹𝑋) + (𝐺𝑋)))
 
Theoremlcdsca 35796 The ring of scalars of the closed kernel dual space. (Contributed by NM, 16-Mar-2015.) (Revised by Mario Carneiro, 6-May-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝑂 = (oppr𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑅 = (Scalar‘𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑅 = 𝑂)
 
Theoremlcdsbase 35797 Base set of scalar ring for the closed kernel dual of a vector space. (Contributed by NM, 18-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = (Base‘𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &   𝑅 = (Base‘𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑𝑅 = 𝐿)
 
Theoremlcdsadd 35798 Scalar addition for the closed kernel vector space dual. (Contributed by NM, 6-Jun-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &    + = (+g𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &    = (+g𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = + )
 
Theoremlcdsmul 35799 Scalar multiplication for the closed kernel vector space dual. (Contributed by NM, 20-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐹 = (Scalar‘𝑈)    &   𝐿 = (Base‘𝐹)    &    · = (.r𝐹)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &   𝑆 = (Scalar‘𝐶)    &    = (.r𝑆)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))    &   (𝜑𝑋𝐿)    &   (𝜑𝑌𝐿)       (𝜑 → (𝑋 𝑌) = (𝑌 · 𝑋))
 
Theoremlcdvs 35800 Scalar product for the closed kernel vector space dual. (Contributed by NM, 28-Mar-2015.)
𝐻 = (LHyp‘𝐾)    &   𝑈 = ((DVecH‘𝐾)‘𝑊)    &   𝐷 = (LDual‘𝑈)    &    · = ( ·𝑠𝐷)    &   𝐶 = ((LCDual‘𝐾)‘𝑊)    &    = ( ·𝑠𝐶)    &   (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))       (𝜑 = · )
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >