Home Metamath Proof ExplorerTheorem List (p. 391 of 425) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26947) Hilbert Space Explorer (26948-28472) Users' Mathboxes (28473-42426)

Theorem List for Metamath Proof Explorer - 39001-39100   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremfourierdlem97 39001* 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝐺 = (ℝ D 𝐹)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐴 ∈ ℝ)    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐺 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ (𝐶(,)+∞))    &   (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))    &   𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))    &   𝐻 = (𝑠 ∈ ℝ ↦ if(𝑠 ∈ dom 𝐺, (𝐺𝑠), 0))       (𝜑 → (𝐺 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))

Theoremfourierdlem98 39002* 𝐹 is continuous on the intervals induced by the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ (𝐶(,)+∞))    &   (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))    &   𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))       (𝜑 → (𝐹 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) ∈ (((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))–cn→ℂ))

Theoremfourierdlem99 39003* limit for 𝐹 at the upper bound of an interval for the moved partition 𝑉. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ (𝐶(,)+∞))    &   (𝜑𝐽 ∈ (0..^((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)))    &   𝑉 = (℩𝑔𝑔 Isom < , < ((0...((#‘({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)), ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃ ∈ ℤ (𝑦 + ( · 𝑇)) ∈ ran 𝑄})))       (𝜑 → if(((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))) = (𝑄‘(((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝐽)) + 1)), ((𝑖 ∈ (0..^𝑀) ↦ 𝐿)‘((𝑦 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ ((𝑢 ∈ (𝐴(,]𝐵) ↦ if(𝑢 = 𝐵, 𝐴, 𝑢))‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘𝑦))}, ℝ, < ))‘(𝑉𝐽))), (𝐹‘((𝑣 ∈ ℝ ↦ (𝑣 + ((⌊‘((𝐵𝑣) / 𝑇)) · 𝑇)))‘(𝑉‘(𝐽 + 1))))) ∈ ((𝐹 ↾ ((𝑉𝐽)(,)(𝑉‘(𝐽 + 1)))) lim (𝑉‘(𝐽 + 1))))

Theoremfourierdlem100 39004* A piecewise continuous function is integrable on any closed interval. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ (𝐶(,)+∞))    &   𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐶 ∧ (𝑝𝑚) = 𝐷) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑁 = ((#‘𝐻) − 1)    &   𝐻 = ({𝐶, 𝐷} ∪ {𝑦 ∈ (𝐶[,]𝐷) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})    &   𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))    &   𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))    &   𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))       (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)

Theoremfourierdlem101 39005* Integral by substitution for a piecewise continuous function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝐺 = (𝑡 ∈ (-π[,]π) ↦ ((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))))    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑁 ∈ ℕ)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐹:(-π[,]π)⟶ℂ)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))       (𝜑 → ∫(-π[,]π)((𝐹𝑡) · ((𝐷𝑁)‘(𝑡𝑋))) d𝑡 = ∫((-π − 𝑋)[,](π − 𝑋))((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑁)‘𝑠)) d𝑠)

Theoremfourierdlem102 39006* For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))    &   𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))    &   𝑀 = ((#‘𝐻) − 1)    &   𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))       (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))

Theoremfourierdlem103 39007* The half lower part of the integral equal to the fourier partial sum, converges to half the left limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑉 ∈ (𝑃𝑀))    &   (𝜑𝑋 ∈ ran 𝑉)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))    &   𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))    &   𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))    &   𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))    &   𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))    &   𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))    &   𝑍 = (𝑚 ∈ ℕ ↦ ∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)    &   𝐸 = (𝑛 ∈ ℕ ↦ (∫(-π(,)0)(𝐺𝑠) d𝑠 / π))    &   (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))    &   𝑂 = (𝑈 ↾ (-π[,]𝑑))    &   𝑇 = ({-π, 𝑑} ∪ (ran 𝑄 ∩ (-π(,)𝑑)))    &   𝑁 = ((#‘𝑇) − 1)    &   𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))    &   𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))    &   𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))    &   (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (-π(,)0)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(𝑑(,)0)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(-π(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))       (𝜑𝑍 ⇝ (𝑊 / 2))

Theoremfourierdlem104 39008* The half upper part of the integral equal to the fourier partial sum, converges to half the right limit of the original function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   (𝜑𝑋 ∈ ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π + 𝑋) ∧ (𝑝𝑚) = (π + 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑉 ∈ (𝑃𝑀))    &   (𝜑𝑋 ∈ ran 𝑉)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘(𝐹𝑡)) ≤ 𝑤)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) ∈ (((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))–cn→ℝ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑧 ∈ ℝ ∀𝑡 ∈ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑉𝑖)(,)(𝑉‘(𝑖 + 1)))) lim (𝑉‘(𝑖 + 1))))    &   𝐻 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 0, (((𝐹‘(𝑋 + 𝑠)) − if(0 < 𝑠, 𝑌, 𝑊)) / 𝑠)))    &   𝐾 = (𝑠 ∈ (-π[,]π) ↦ if(𝑠 = 0, 1, (𝑠 / (2 · (sin‘(𝑠 / 2))))))    &   𝑈 = (𝑠 ∈ (-π[,]π) ↦ ((𝐻𝑠) · (𝐾𝑠)))    &   𝑆 = (𝑠 ∈ (-π[,]π) ↦ (sin‘((𝑛 + (1 / 2)) · 𝑠)))    &   𝐺 = (𝑠 ∈ (-π[,]π) ↦ ((𝑈𝑠) · (𝑆𝑠)))    &   𝑍 = (𝑚 ∈ ℕ ↦ ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑚)‘𝑠)) d𝑠)    &   𝐸 = (𝑛 ∈ ℕ ↦ (∫(0(,)π)(𝐺𝑠) d𝑠 / π))    &   (𝜑𝑌 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   (𝜑𝑊 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝐴 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝐵 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐷 = (𝑛 ∈ ℕ ↦ (𝑠 ∈ ℝ ↦ if((𝑠 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑠)) / ((2 · π) · (sin‘(𝑠 / 2)))))))    &   𝑂 = (𝑈 ↾ (𝑑[,]π))    &   𝑇 = ({𝑑, π} ∪ (ran 𝑄 ∩ (𝑑(,)π)))    &   𝑁 = ((#‘𝑇) − 1)    &   𝐽 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝑇))    &   𝑄 = (𝑖 ∈ (0...𝑀) ↦ ((𝑉𝑖) − 𝑋))    &   𝐶 = (𝑙 ∈ (0..^𝑀)((𝐽𝑘)(,)(𝐽‘(𝑘 + 1))) ⊆ ((𝑄𝑙)(,)(𝑄‘(𝑙 + 1))))    &   (𝜒 ↔ (((((𝜑𝑒 ∈ ℝ+) ∧ 𝑑 ∈ (0(,)π)) ∧ 𝑘 ∈ ℕ) ∧ (abs‘∫(0(,)𝑑)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)) ∧ (abs‘∫(𝑑(,)π)((𝑈𝑠) · (sin‘((𝑘 + (1 / 2)) · 𝑠))) d𝑠) < (𝑒 / 2)))       (𝜑𝑍 ⇝ (𝑌 / 2))

Theoremfourierdlem105 39009* A piecewise continuous function is integrable on any closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   (𝜑𝐶 ∈ ℝ)    &   (𝜑𝐷 ∈ (𝐶(,)+∞))       (𝜑 → (𝑥 ∈ (𝐶[,]𝐷) ↦ (𝐹𝑥)) ∈ 𝐿1)

Theoremfourierdlem106 39010* For a piecewise smooth function, the left and the right limits exist at any point. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → (((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋) ≠ ∅ ∧ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋) ≠ ∅))

Theoremfourierdlem107 39011* The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 38996 where the integral was shifted by the exact period. This lemma uses local definitions, so that the proof is more readable. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑋 ∈ ℝ+)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = 𝐴) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝐻 = ({(𝐴𝑋), 𝐴} ∪ {𝑦 ∈ ((𝐴𝑋)[,]𝐴) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})    &   𝑁 = ((#‘𝐻) − 1)    &   𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))    &   𝑍 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))    &   𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑖 ∈ (0..^𝑀) ∣ (𝑄𝑖) ≤ (𝑍‘(𝐸𝑥))}, ℝ, < ))       (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)

Theoremfourierdlem108 39012* The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any positive value 𝑋. This lemma generalizes fourierdlem92 38996 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑋 ∈ ℝ+)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))       (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)

Theoremfourierdlem109 39013* The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 38996 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑋 ∈ ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (𝐴𝑋) ∧ (𝑝𝑚) = (𝐵𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝐻 = ({(𝐴𝑋), (𝐵𝑋)} ∪ {𝑥 ∈ ((𝐴𝑋)[,](𝐵𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑥 + (𝑘 · 𝑇)) ∈ ran 𝑄})    &   𝑁 = ((#‘𝐻) − 1)    &   𝑆 = (℩𝑓𝑓 Isom < , < ((0...𝑁), 𝐻))    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((𝐵𝑥) / 𝑇)) · 𝑇)))    &   𝐽 = (𝑦 ∈ (𝐴(,]𝐵) ↦ if(𝑦 = 𝐵, 𝐴, 𝑦))    &   𝐼 = (𝑥 ∈ ℝ ↦ sup({𝑗 ∈ (0..^𝑀) ∣ (𝑄𝑗) ≤ (𝐽‘(𝐸𝑥))}, ℝ, < ))       (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)

Theoremfourierdlem110 39014* The integral of a piecewise continuous periodic function 𝐹 is unchanged if the domain is shifted by any value 𝑋. This lemma generalizes fourierdlem92 38996 where the integral was shifted by the exact period. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   𝑇 = (𝐵𝐴)    &   (𝜑𝑋 ∈ ℝ)    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))       (𝜑 → ∫((𝐴𝑋)[,](𝐵𝑋))(𝐹𝑥) d𝑥 = ∫(𝐴[,]𝐵)(𝐹𝑥) d𝑥)

Theoremfourierdlem111 39015* The fourier partial sum for 𝐹 is the sum of two integrals, with the same integrand involving 𝐹 and the Dirichlet Kernel 𝐷, but on two opposite intervals. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑡) · (cos‘(𝑛 · 𝑡))) d𝑡 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑡) · (sin‘(𝑛 · 𝑡))) d𝑡 / π))    &   𝑆 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))    &   𝐷 = (𝑛 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑛) + 1) / (2 · π)), ((sin‘((𝑛 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))    &   𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑚) = π) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐹:ℝ⟶ℝ)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = (𝑥 ∈ ℝ ↦ ((𝐹‘(𝑋 + 𝑥)) · ((𝐷𝑛)‘𝑥)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑅 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐿 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   𝑇 = (2 · π)    &   𝑂 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑚)) ∣ (((𝑝‘0) = (-π − 𝑋) ∧ (𝑝𝑚) = (π − 𝑋)) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝑊 = (𝑖 ∈ (0...𝑀) ↦ ((𝑄𝑖) − 𝑋))       ((𝜑𝑛 ∈ ℕ) → (𝑆𝑛) = (∫(-π(,)0)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠 + ∫(0(,)π)((𝐹‘(𝑋 + 𝑠)) · ((𝐷𝑛)‘𝑠)) d𝑠))

Theoremfourierdlem112 39016* Here abbreviations (local definitions) are introduced to prove the fourier 39023 theorem. (𝑍𝑚) is the mth partial sum of the fourier series. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝐷 = (𝑚 ∈ ℕ ↦ (𝑦 ∈ ℝ ↦ if((𝑦 mod (2 · π)) = 0, (((2 · 𝑚) + 1) / (2 · π)), ((sin‘((𝑚 + (1 / 2)) · 𝑦)) / ((2 · π) · (sin‘(𝑦 / 2)))))))    &   𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   𝑁 = ((#‘({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})) − 1)    &   𝑉 = (℩𝑓𝑓 Isom < , < ((0...𝑁), ({(-π + 𝑋), (π + 𝑋)} ∪ {𝑦 ∈ ((-π + 𝑋)[,](π + 𝑋)) ∣ ∃𝑘 ∈ ℤ (𝑦 + (𝑘 · 𝑇)) ∈ ran 𝑄})))    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝑋 ∈ ran 𝑉)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝐶 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑈 ∈ ((𝐹 ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   (𝜑𝐸 ∈ (((ℝ D 𝐹) ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝐼 ∈ (((ℝ D 𝐹) ↾ (𝑋(,)+∞)) lim 𝑋))    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑍 = (𝑚 ∈ ℕ ↦ (((𝐴‘0) / 2) + Σ𝑛 ∈ (1...𝑚)(((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))))    &   𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))    &   (𝜑 → ∃𝑤 ∈ ℝ ∀𝑡 ∈ ℝ (abs‘(𝐹𝑡)) ≤ 𝑤)    &   (𝜑 → ∃𝑧 ∈ ℝ ∀𝑡 ∈ dom (ℝ D 𝐹)(abs‘((ℝ D 𝐹)‘𝑡)) ≤ 𝑧)    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))

Theoremfourierdlem113 39017* Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑄 ∈ (𝑃𝑀))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → ((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) ∈ (((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))–cn→ℂ))    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄𝑖)) ≠ ∅)    &   ((𝜑𝑖 ∈ (0..^𝑀)) → (((ℝ D 𝐹) ↾ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))) lim (𝑄‘(𝑖 + 1))) ≠ ∅)    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))    &   (𝜑 → (𝐸𝑋) ∈ ran 𝑄)       (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))

Theoremfourierdlem114 39018* Fourier series convergence for periodic, piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))    &   𝑃 = (𝑛 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑𝑚 (0...𝑛)) ∣ (((𝑝‘0) = -π ∧ (𝑝𝑛) = π) ∧ ∀𝑖 ∈ (0..^𝑛)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})    &   𝐸 = (𝑥 ∈ ℝ ↦ (𝑥 + ((⌊‘((π − 𝑥) / 𝑇)) · 𝑇)))    &   𝐻 = ({-π, π, (𝐸𝑋)} ∪ ((-π[,]π) ∖ dom 𝐺))    &   𝑀 = ((#‘𝐻) − 1)    &   𝑄 = (℩𝑔𝑔 Isom < , < ((0...𝑀), 𝐻))       (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))

Theoremfourierdlem115 39019* Fourier serier convergence, for piecewise smooth functions. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑆 = (𝑘 ∈ ℕ ↦ (((𝐴𝑘) · (cos‘(𝑘 · 𝑋))) + ((𝐵𝑘) · (sin‘(𝑘 · 𝑋)))))       (𝜑 → (seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)) ∧ (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)))

Theoremfourierd 39020* Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 39024. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 39025 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 39030. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))       (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2))

Theoremfourierclimd 39021* Fourier series convergence, for piecewise smooth functions. See fourierd 39020 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   (𝜑𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋))    &   (𝜑𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))       (𝜑 → seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2)))

Theoremfourierclim 39022* Fourier series convergence, for piecewise smooth functions. See fourier 39023 for the analogous Σ equation. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐹:ℝ⟶ℝ    &   𝑇 = (2 · π)    &   (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   ((-π(,)π) ∖ dom 𝐺) ∈ Fin    &   𝐺 ∈ (dom 𝐺cn→ℂ)    &   (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   𝑋 ∈ ℝ    &   𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)    &   𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝑆 = (𝑛 ∈ ℕ ↦ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋)))))       seq1( + , 𝑆) ⇝ (((𝐿 + 𝑅) / 2) − ((𝐴‘0) / 2))

Theoremfourier 39023* Fourier series convergence for periodic, piecewise smooth functions. The series converges to the average value of the left and the right limit of the function. Thus, if the function is continuous at a given point, the series converges exactly to the function value, see fouriercnp 39024. Notice that for a piecewise smooth function, the left and right limits always exist, see fourier2 39025 for an alternative form of the theorem that makes this fact explicit. When the first derivative is continuous, a simpler version of the theorem can be stated, see fouriercn 39030. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐹:ℝ⟶ℝ    &   𝑇 = (2 · π)    &   (𝑥 ∈ ℝ → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   ((-π(,)π) ∖ dom 𝐺) ∈ Fin    &   𝐺 ∈ (dom 𝐺cn→ℂ)    &   (𝑥 ∈ ((-π[,)π) ∖ dom 𝐺) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   (𝑥 ∈ ((-π(,]π) ∖ dom 𝐺) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   𝑋 ∈ ℝ    &   𝐿 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)    &   𝑅 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))       (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝐿 + 𝑅) / 2)

Theoremfouriercnp 39024* If 𝐹 is continuous at the point 𝑋, then its Fourier series at 𝑋, converges to (𝐹𝑋). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   𝐽 = (topGen‘ran (,))    &   (𝜑𝐹 ∈ ((𝐽 CnP 𝐽)‘𝑋))    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))       (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))

Theoremfourier2 39025* Fourier series convergence, for a piecewise smooth function. Here it is also proven the existence of the left and right limits of 𝐹 at any given point 𝑋. See fourierd 39020 for a comparison. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑 → ((-π(,)π) ∖ dom 𝐺) ∈ Fin)    &   (𝜑𝐺 ∈ (dom 𝐺cn→ℂ))    &   ((𝜑𝑥 ∈ ((-π[,)π) ∖ dom 𝐺)) → ((𝐺 ↾ (𝑥(,)+∞)) lim 𝑥) ≠ ∅)    &   ((𝜑𝑥 ∈ ((-π(,]π) ∖ dom 𝐺)) → ((𝐺 ↾ (-∞(,)𝑥)) lim 𝑥) ≠ ∅)    &   (𝜑𝑋 ∈ ℝ)    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))       (𝜑 → ∃𝑙 ∈ ((𝐹 ↾ (-∞(,)𝑋)) lim 𝑋)∃𝑟 ∈ ((𝐹 ↾ (𝑋(,)+∞)) lim 𝑋)(((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = ((𝑙 + 𝑟) / 2))

Theoremsqwvfoura 39026* Fourier coefficients for the square wave function. Since the square function is an odd function, there is no contribution from the 𝐴 coefficients. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑇 = (2 · π)    &   𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑁 · 𝑥))) d𝑥 / π) = 0)

Theoremsqwvfourb 39027* Fourier series 𝐵 coefficients for the square wave function. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑇 = (2 · π)    &   𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))    &   (𝜑𝑁 ∈ ℕ)       (𝜑 → (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑁 · 𝑥))) d𝑥 / π) = if(2 ∥ 𝑁, 0, (4 / (𝑁 · π))))

Theoremfourierswlem 39028* The Fourier series for the square wave 𝐹 converges to 𝑌, a simpler expression for this special case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑇 = (2 · π)    &   𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))    &   𝑋 ∈ ℝ    &   𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))       𝑌 = ((if((𝑋 mod 𝑇) ∈ (0(,]π), 1, -1) + (𝐹𝑋)) / 2)

Theoremfouriersw 39029* Fourier series convergence, for the square wave function. Where 𝐹 is discontinuous, the series converges to 0, the average value of the left and the right limits. Notice that 𝐹 is an odd function and its Fourier expansion has only sine terms (coefficients for cosine terms are zero). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝑇 = (2 · π)    &   𝐹 = (𝑥 ∈ ℝ ↦ if((𝑥 mod 𝑇) < π, 1, -1))    &   𝑋 ∈ ℝ    &   𝑆 = (𝑛 ∈ ℕ ↦ ((sin‘(((2 · 𝑛) − 1) · 𝑋)) / ((2 · 𝑛) − 1)))    &   𝑌 = if((𝑋 mod π) = 0, 0, (𝐹𝑋))       (((4 / π) · Σ𝑘 ∈ ℕ ((sin‘(((2 · 𝑘) − 1) · 𝑋)) / ((2 · 𝑘) − 1))) = 𝑌 ∧ seq1( + , 𝑆) ⇝ ((π / 4) · 𝑌))

Theoremfouriercn 39030* If the derivative of 𝐹 is continuous, then the Fourier series for 𝐹 converges to 𝐹 everywhere and the hypothesis are simpler than those for the more general case of a piecewise smooth function ( see fourierd 39020 for a comparison). (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:ℝ⟶ℝ)    &   𝑇 = (2 · π)    &   ((𝜑𝑥 ∈ ℝ) → (𝐹‘(𝑥 + 𝑇)) = (𝐹𝑥))    &   (𝜑 → (ℝ D 𝐹) ∈ (ℝ–cn→ℂ))    &   𝐺 = ((ℝ D 𝐹) ↾ (-π(,)π))    &   (𝜑𝑋 ∈ ℝ)    &   𝐴 = (𝑛 ∈ ℕ0 ↦ (∫(-π(,)π)((𝐹𝑥) · (cos‘(𝑛 · 𝑥))) d𝑥 / π))    &   𝐵 = (𝑛 ∈ ℕ ↦ (∫(-π(,)π)((𝐹𝑥) · (sin‘(𝑛 · 𝑥))) d𝑥 / π))       (𝜑 → (((𝐴‘0) / 2) + Σ𝑛 ∈ ℕ (((𝐴𝑛) · (cos‘(𝑛 · 𝑋))) + ((𝐵𝑛) · (sin‘(𝑛 · 𝑋))))) = (𝐹𝑋))

20.31.17  e is transcendental

Theoremelaa2lem 39031* Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 39033. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 1-Oct-2020.)
(𝜑𝐴 ∈ 𝔸)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐺 ∈ (Poly‘ℤ))    &   (𝜑𝐺 ≠ 0𝑝)    &   (𝜑 → (𝐺𝐴) = 0)    &   𝑀 = inf({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )    &   𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))    &   𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))       (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))

Theoremelaa2lemOLD 39032* Elementhood in the set of nonzero algebraic numbers. ' Only if ' part of elaa2 39033. (Contributed by Glauco Siliprandi, 5-Apr-2020.) Obsolete version of elaa2lem 39031 as of 1-Oct-2020. (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝐴 ∈ 𝔸)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐺 ∈ (Poly‘ℤ))    &   (𝜑𝐺 ≠ 0𝑝)    &   (𝜑 → (𝐺𝐴) = 0)    &   𝑀 = sup({𝑛 ∈ ℕ0 ∣ ((coeff‘𝐺)‘𝑛) ≠ 0}, ℝ, < )    &   𝐼 = (𝑘 ∈ ℕ0 ↦ ((coeff‘𝐺)‘(𝑘 + 𝑀)))    &   𝐹 = (𝑧 ∈ ℂ ↦ Σ𝑘 ∈ (0...((deg‘𝐺) − 𝑀))((𝐼𝑘) · (𝑧𝑘)))       (𝜑 → ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0))

Theoremelaa2 39033* Elementhood in the set of nonzero algebraic numbers: when 𝐴 is nonzero, the polynomial 𝑓 can be chosen with a nonzero constant term. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 1-Oct-2020.)
(𝐴 ∈ (𝔸 ∖ {0}) ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ (Poly‘ℤ)(((coeff‘𝑓)‘0) ≠ 0 ∧ (𝑓𝐴) = 0)))

Theoremetransclem1 39034* 𝐻 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))       (𝜑 → (𝐻𝐽):𝑋⟶ℂ)

Theoremetransclem2 39035* Derivative of 𝐺. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑥𝐹    &   (𝜑𝐹:ℝ⟶ℂ)    &   ((𝜑𝑖 ∈ (0...(𝑅 + 1))) → ((ℝ D𝑛 𝐹)‘𝑖):ℝ⟶ℂ)    &   𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))       (𝜑 → (ℝ D 𝐺) = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘(𝑖 + 1))‘𝑥)))

Theoremetransclem3 39036 The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝐾 ∈ ℤ)       (𝜑 → if(𝑃 < (𝐶𝐽), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝐽)))) · ((𝐾𝐽)↑(𝑃 − (𝐶𝐽))))) ∈ ℤ)

Theoremetransclem4 39037* 𝐹 expressed as a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 ⊆ ℂ)    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝐴 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝐴 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐸 = (𝑥𝐴 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))       (𝜑𝐹 = 𝐸)

Theoremetransclem5 39038* A change of bound variable, often used in proofs for etransc 39083. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))) = (𝑘 ∈ (0...𝑀) ↦ (𝑦𝑋 ↦ ((𝑦𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))

Theoremetransclem6 39039* A change of bound variable, often used in proofs for etransc 39083. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃))) = (𝑦 ∈ ℝ ↦ ((𝑦↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑦𝑘)↑𝑃)))

Theoremetransclem7 39040* The given product is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   (𝜑𝐽 ∈ (0...𝑀))       (𝜑 → ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗))))) ∈ ℤ)

Theoremetransclem8 39041* 𝐹 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑃 ∈ ℕ)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))       (𝜑𝐹:𝑋⟶ℂ)

Theoremetransclem9 39042 If 𝐾 divides 𝑁 but 𝐾 does not divide 𝑀 then 𝑀 + 𝑁 cannot be zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐾 ∈ ℤ)    &   (𝜑𝐾 ≠ 0)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → ¬ 𝐾𝑀)    &   (𝜑𝐾𝑁)       (𝜑 → (𝑀 + 𝑁) ≠ 0)

Theoremetransclem10 39043 The given if term is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   (𝜑𝐽 ∈ ℤ)       (𝜑 → if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) ∈ ℤ)

Theoremetransclem11 39044* A change of bound variable, often used in proofs for etransc 39083. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛}) = (𝑚 ∈ ℕ0 ↦ {𝑑 ∈ ((0...𝑚) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑑𝑘) = 𝑚})

Theoremetransclem12 39045* 𝐶 applied to 𝑁. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐶𝑁) = {𝑐 ∈ ((0...𝑁) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑁})

Theoremetransclem13 39046* 𝐹 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑋 ⊆ ℂ)    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑌𝑋)       (𝜑 → (𝐹𝑌) = ∏𝑗 ∈ (0...𝑀)((𝑌𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃)))

Theoremetransclem14 39047* Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))    &   (𝜑𝐽 = 0)    &   (𝜑 → (𝐶‘0) = (𝑃 − 1))       (𝜑𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · ((!‘(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · (-𝑗↑(𝑃 − (𝐶𝑗))))))))

Theoremetransclem15 39048* Value of the term 𝑇, when 𝐽 = 0 and (𝐶‘0) = 𝑃 − 1 (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))    &   (𝜑𝐽 = 0)    &   (𝜑 → (𝐶‘0) ≠ (𝑃 − 1))       (𝜑𝑇 = 0)

Theoremetransclem16 39049* Every element in the range of 𝐶 is a finite set . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝐶𝑁) ∈ Fin)

Theoremetransclem17 39050* The 𝑁-th derivative of 𝐻. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑥𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))))))

Theoremetransclem18 39051* The given function is integrable . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑 → ℝ ∈ {ℝ, ℂ})    &   (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝑥 ∈ (𝐴(,)𝐵) ↦ ((e↑𝑐-𝑥) · (𝐹𝑥))) ∈ 𝐿1)

Theoremetransclem19 39052* The 𝑁-th derivative of 𝐻 is 0 if 𝑁 is large enough. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝑁 ∈ ℤ)    &   (𝜑 → if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁)       (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) = (𝑥𝑋 ↦ 0))

Theoremetransclem20 39053* 𝐻 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁):𝑋⟶ℂ)

Theoremetransclem21 39054* The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝑌𝑋)       (𝜑 → (((𝑆 D𝑛 (𝐻𝐽))‘𝑁)‘𝑌) = if(if(𝐽 = 0, (𝑃 − 1), 𝑃) < 𝑁, 0, (((!‘if(𝐽 = 0, (𝑃 − 1), 𝑃)) / (!‘(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁))) · ((𝑌𝐽)↑(if(𝐽 = 0, (𝑃 − 1), 𝑃) − 𝑁)))))

Theoremetransclem22 39055* The 𝑁-th derivative of 𝐻 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 (𝐻𝐽))‘𝑁) ∈ (𝑋cn→ℂ))

Theoremetransclem23 39056* This is the claim proof in [Juillerat] p. 14 (but in our proof, Stirling's approximation is not used). (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴:ℕ0⟶ℤ)    &   𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)    &   𝐾 = (𝐿 / (!‘(𝑃 − 1)))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)       (𝜑 → (abs‘𝐾) < 1)

Theoremetransclem24 39057* 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. when 𝐽 = 0 and 𝐼 is not equal to 𝑃 − 1. This is the second part of case 2 proven in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝐼 ∈ ℕ0)    &   (𝜑𝐼 ≠ (𝑃 − 1))    &   (𝜑𝐽 = 0)    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝐷 ∈ (𝐶𝐼))       (𝜑𝑃 ∥ ((((!‘𝐼) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) / (!‘(𝑃 − 1))))

Theoremetransclem25 39058* 𝑃 factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐶:(0...𝑀)⟶(0...𝑁))    &   (𝜑 → Σ𝑗 ∈ (0...𝑀)(𝐶𝑗) = 𝑁)    &   𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐶𝑗))) · (if((𝑃 − 1) < (𝐶‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐶‘0)))) · (𝐽↑((𝑃 − 1) − (𝐶‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐶𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐶𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐶𝑗)))))))    &   (𝜑𝐽 ∈ (1...𝑀))       (𝜑 → (!‘𝑃) ∥ 𝑇)

Theoremetransclem26 39059* Every term in the sum of the 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐽 ∈ ℤ)    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝐷 ∈ (𝐶𝑁))       (𝜑 → (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗))))))) ∈ ℤ)

Theoremetransclem27 39060* The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐶:dom 𝐶⟶(ℕ0𝑚 (0...𝑀)))    &   𝐺 = (𝑥𝑋 ↦ Σ𝑙 ∈ dom 𝐶𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘((𝐶𝑙)‘𝑗))‘𝑥))    &   (𝜑𝐽𝑋)    &   (𝜑𝐽 ∈ ℤ)       (𝜑 → (𝐺𝐽) ∈ ℤ)

Theoremetransclem28 39061* (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑁 ∈ ℕ0)    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝐷 ∈ (𝐶𝑁))    &   (𝜑𝐽 ∈ (0...𝑀))    &   𝑇 = (((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝐷𝑗))) · (if((𝑃 − 1) < (𝐷‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝐷‘0)))) · (𝐽↑((𝑃 − 1) − (𝐷‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝐷𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝐷𝑗)))) · ((𝐽𝑗)↑(𝑃 − (𝐷𝑗)))))))       (𝜑 → (!‘(𝑃 − 1)) ∥ 𝑇)

Theoremetransclem29 39062* The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   𝐸 = (𝑥𝑋 ↦ ∏𝑗 ∈ (0...𝑀)((𝐻𝑗)‘𝑥))       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))

Theoremetransclem30 39063* The 𝑁-th derivative of 𝐹. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · ∏𝑗 ∈ (0...𝑀)(((𝑆 D𝑛 (𝐻𝑗))‘(𝑐𝑗))‘𝑥))))

Theoremetransclem31 39064* The 𝑁-th derivative of 𝐻 applied to 𝑌. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝑌𝑋)       (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝑌) = Σ𝑐 ∈ (𝐶𝑁)(((!‘𝑁) / ∏𝑗 ∈ (0...𝑀)(!‘(𝑐𝑗))) · (if((𝑃 − 1) < (𝑐‘0), 0, (((!‘(𝑃 − 1)) / (!‘((𝑃 − 1) − (𝑐‘0)))) · (𝑌↑((𝑃 − 1) − (𝑐‘0))))) · ∏𝑗 ∈ (1...𝑀)if(𝑃 < (𝑐𝑗), 0, (((!‘𝑃) / (!‘(𝑃 − (𝑐𝑗)))) · ((𝑌𝑗)↑(𝑃 − (𝑐𝑗))))))))

Theoremetransclem32 39065* This is the proof for the last equation in the proof of the derivative calculated in [Juillerat] p. 12, just after equation *(6) . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑 → ((𝑀 · 𝑃) + (𝑃 − 1)) < 𝑁)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) = (𝑥𝑋 ↦ 0))

Theoremetransclem33 39066* 𝐹 is smooth. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁):𝑋⟶ℂ)

Theoremetransclem34 39067* The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑘 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑘)↑if(𝑘 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑘 ∈ (0...𝑀)(𝑐𝑘) = 𝑛})       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))

Theoremetransclem35 39068* 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is case 2 of the proof in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   𝐷 = (𝑗 ∈ (0...𝑀) ↦ if(𝑗 = 0, (𝑃 − 1), 0))       (𝜑 → (((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) = ((!‘(𝑃 − 1)) · (∏𝑗 ∈ (1...𝑀)-𝑗𝑃)))

Theoremetransclem36 39069* The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   (𝜑𝐽𝑋)    &   (𝜑𝐽 ∈ ℤ)    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})       (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ)

Theoremetransclem37 39070* (𝑃 − 1) factorial divides the 𝑁-th derivative of 𝐹 applied to 𝐽. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   𝐻 = (𝑗 ∈ (0...𝑀) ↦ (𝑥𝑋 ↦ ((𝑥𝑗)↑if(𝑗 = 0, (𝑃 − 1), 𝑃))))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑𝐽𝑋)       (𝜑 → (!‘(𝑃 − 1)) ∥ (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽))

Theoremetransclem38 39071* 𝑃 divides the I -th derivative of 𝐹 applied to 𝐽. if it is not the case that 𝐼 = 𝑃 − 1 and 𝐽 = 0. This is case 1 and the second part of case 2 proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝐼 ∈ ℕ0)    &   (𝜑𝐽 ∈ (0...𝑀))    &   (𝜑 → ¬ (𝐼 = (𝑃 − 1) ∧ 𝐽 = 0))    &   𝐶 = (𝑛 ∈ ℕ0 ↦ {𝑐 ∈ ((0...𝑛) ↑𝑚 (0...𝑀)) ∣ Σ𝑗 ∈ (0...𝑀)(𝑐𝑗) = 𝑛})       (𝜑𝑃 ∥ ((((ℝ D𝑛 𝐹)‘𝐼)‘𝐽) / (!‘(𝑃 − 1))))

Theoremetransclem39 39072* 𝐺 is a function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))       (𝜑𝐺:ℝ⟶ℂ)

Theoremetransclem40 39073* The 𝑁-th derivative of 𝐹 is continuous. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑘 ∈ (1...𝑀)((𝑥𝑘)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → ((𝑆 D𝑛 𝐹)‘𝑁) ∈ (𝑋cn→ℂ))

Theoremetransclem41 39074* 𝑃 does not divide the P-1 -th derivative of 𝐹 applied to 0. This is the first part of case 2: proven in in [Juillerat] p. 13 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))       (𝜑 → ¬ 𝑃 ∥ ((((ℝ D𝑛 𝐹)‘(𝑃 − 1))‘0) / (!‘(𝑃 − 1))))

Theoremetransclem42 39075* The 𝑁-th derivative of 𝐹 applied to 𝐽 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐽𝑋)    &   (𝜑𝐽 ∈ ℤ)       (𝜑 → (((𝑆 D𝑛 𝐹)‘𝑁)‘𝐽) ∈ ℤ)

Theoremetransclem43 39076* 𝐺 is a continuous function. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑆 ∈ {ℝ, ℂ})    &   (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))    &   (𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥𝑋 ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐺 = (𝑥𝑋 ↦ Σ𝑖 ∈ (0...𝑅)(((𝑆 D𝑛 𝐹)‘𝑖)‘𝑥))       (𝜑𝐺 ∈ (𝑋cn→ℂ))

Theoremetransclem44 39077* The given finite sum is nonzero. This is the claim proved after equation (7) in [Juillerat] p. 12 . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴:ℕ0⟶ℤ)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   (𝜑𝑀 ∈ ℕ0)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (abs‘(𝐴‘0)) < 𝑃)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...((𝑀 · 𝑃) + (𝑃 − 1))))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))       (𝜑𝐾 ≠ 0)

Theoremetransclem45 39078* 𝐾 is an integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑃 ∈ ℕ)    &   (𝜑𝑀 ∈ ℕ0)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   (𝜑𝐴:ℕ0⟶ℤ)    &   𝐾 = (Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1)))       (𝜑𝐾 ∈ ℤ)

Theoremetransclem46 39079* This is the proof for equation *(7) in [Juillerat] p. 12. The proven equality will lead to a contradiction, because the left-hand side goes to 0 for large 𝑃, but the right-hand side is a nonzero integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   𝑀 = (deg‘𝑄)    &   (𝜑 → ℝ ⊆ ℝ)    &   (𝜑 → ℝ ∈ {ℝ, ℂ})    &   (𝜑 → ℝ ∈ ((TopOpen‘ℂfld) ↾t ℝ))    &   (𝜑𝑃 ∈ ℕ)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)    &   𝑅 = ((𝑀 · 𝑃) + (𝑃 − 1))    &   𝐺 = (𝑥 ∈ ℝ ↦ Σ𝑖 ∈ (0...𝑅)(((ℝ D𝑛 𝐹)‘𝑖)‘𝑥))    &   𝑂 = (𝑥 ∈ (0[,]𝑗) ↦ -((e↑𝑐-𝑥) · (𝐺𝑥)))       (𝜑 → (𝐿 / (!‘(𝑃 − 1))) = (-Σ𝑘 ∈ ((0...𝑀) × (0...𝑅))((𝐴‘(1st𝑘)) · (((ℝ D𝑛 𝐹)‘(2nd𝑘))‘(1st𝑘))) / (!‘(𝑃 − 1))))

Theoremetransclem47 39080* e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   𝑀 = (deg‘𝑄)    &   (𝜑𝑃 ∈ ℙ)    &   (𝜑 → (abs‘(𝐴‘0)) < 𝑃)    &   (𝜑 → (!‘𝑀) < 𝑃)    &   (𝜑 → (Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1)))) · (((𝑀↑(𝑀 + 1))↑(𝑃 − 1)) / (!‘(𝑃 − 1)))) < 1)    &   𝐹 = (𝑥 ∈ ℝ ↦ ((𝑥↑(𝑃 − 1)) · ∏𝑗 ∈ (1...𝑀)((𝑥𝑗)↑𝑃)))    &   𝐿 = Σ𝑗 ∈ (0...𝑀)(((𝐴𝑗) · (e↑𝑐𝑗)) · ∫(0(,)𝑗)((e↑𝑐-𝑥) · (𝐹𝑥)) d𝑥)    &   𝐾 = (𝐿 / (!‘(𝑃 − 1)))       (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))

Theoremetransclem48OLD 39081* e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) Obsolete version of etransclem48 39082 as of 28-Sep-2020. (New usage is discouraged.) (Proof modification is discouraged.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   𝑀 = (deg‘𝑄)    &   𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))    &   𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))    &   𝐼 = sup({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )    &   𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )       (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))

Theoremetransclem48 39082* e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. In this lemma, a large enough prime 𝑝 is chosen: it will be used by subsequent lemmas. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Revised by AV, 28-Sep-2020.)
(𝜑𝑄 ∈ ((Poly‘ℤ) ∖ {0𝑝}))    &   (𝜑 → (𝑄‘e) = 0)    &   𝐴 = (coeff‘𝑄)    &   (𝜑 → (𝐴‘0) ≠ 0)    &   𝑀 = (deg‘𝑄)    &   𝐶 = Σ𝑗 ∈ (0...𝑀)((abs‘((𝐴𝑗) · (e↑𝑐𝑗))) · (𝑀 · (𝑀↑(𝑀 + 1))))    &   𝑆 = (𝑛 ∈ ℕ0 ↦ (𝐶 · (((𝑀↑(𝑀 + 1))↑𝑛) / (!‘𝑛))))    &   𝐼 = inf({𝑖 ∈ ℕ0 ∣ ∀𝑛 ∈ (ℤ𝑖)(abs‘(𝑆𝑛)) < 1}, ℝ, < )    &   𝑇 = sup({(abs‘(𝐴‘0)), (!‘𝑀), 𝐼}, ℝ*, < )       (𝜑 → ∃𝑘 ∈ ℤ (𝑘 ≠ 0 ∧ (abs‘𝑘) < 1))

Theoremetransc 39083 e is transcendental. Section *5 of [Juillerat] p. 11 can be used as a reference for this proof. (Contributed by Glauco Siliprandi, 5-Apr-2020.) (Proof shortened by AV, 28-Sep-2020.)
e ∈ (ℂ ∖ 𝔸)

20.31.18  n-dimensional Euclidean space

Theoremrrxtopn 39084* The topology of the generalized real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼𝑉)       (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (Base‘(ℝ^‘𝐼)), 𝑔 ∈ (Base‘(ℝ^‘𝐼)) ↦ (√‘(ℝfld Σg (𝑥𝐼 ↦ (((𝑓𝑥) − (𝑔𝑥))↑2)))))))

Theoremrrxngp 39085 Generalized Euclidean real spaces are normed groups. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼𝑉 → (ℝ^‘𝐼) ∈ NrmGrp)

Theoremrrxbasefi 39086 The base of the generalized real Euclidean space, when the dimension of the space is finite. This justifies the use of (ℝ ↑𝑚 𝑋) for the development of the Lebeasgue measure theory for n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝑋 ∈ Fin)    &   𝐻 = (ℝ^‘𝑋)    &   𝐵 = (Base‘𝐻)       (𝜑𝐵 = (ℝ ↑𝑚 𝑋))

Theoremrrxtps 39087 Generalized Euclidean real spaces are topological spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝐼𝑉 → (ℝ^‘𝐼) ∈ TopSp)

Theoremrrxdsfi 39088* The distance over generalized Euclidean spaces. Finite dimensional case. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐻 = (ℝ^‘𝐼)    &   𝐵 = (ℝ ↑𝑚 𝐼)       (𝐼 ∈ Fin → (dist‘𝐻) = (𝑓𝐵, 𝑔𝐵 ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2))))

Theoremrrxtopnfi 39089* The topology of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)       (𝜑 → (TopOpen‘(ℝ^‘𝐼)) = (MetOpen‘(𝑓 ∈ (ℝ ↑𝑚 𝐼), 𝑔 ∈ (ℝ ↑𝑚 𝐼) ↦ (√‘Σ𝑘𝐼 (((𝑓𝑘) − (𝑔𝑘))↑2)))))

Theoremrrxmetfi 39090 Euclidean space is a metric space. Finite dimensional version. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐷 = (dist‘(ℝ^‘𝐼))       (𝐼 ∈ Fin → 𝐷 ∈ (Met‘(ℝ ↑𝑚 𝐼)))

Theoremrrxtopon 39091 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼𝑉𝐽 ∈ (TopOn‘(Base‘(ℝ^‘𝐼))))

Theoremrrxtop 39092 The topology on Generalized Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼𝑉𝐽 ∈ Top)

Theoremrrndistlt 39093* Given two points in the space of n-dimensional real numbers, if every component is closer than 𝐸 then the distance between the two points is less then ((√‘𝑛) · 𝐸) (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝐼 ≠ ∅)    &   𝑁 = (#‘𝐼)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   (𝜑𝑌 ∈ (ℝ ↑𝑚 𝐼))    &   ((𝜑𝑖𝐼) → (abs‘((𝑋𝑖) − (𝑌𝑖))) < 𝐸)    &   (𝜑𝐸 ∈ ℝ+)    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝜑 → (𝑋𝐷𝑌) < ((√‘𝑁) · 𝐸))

Theoremrrxtoponfi 39094 The topology on n-dimensional Euclidean real spaces. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
𝐽 = (TopOpen‘(ℝ^‘𝐼))       (𝐼 ∈ Fin → 𝐽 ∈ (TopOn‘(ℝ ↑𝑚 𝐼)))

Theoremrrxunitopnfi 39095 The base set of the standard topology on the space of n-dimensional Real numbers. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝑋 ∈ Fin → (TopOpen‘(ℝ^‘𝑋)) = (ℝ ↑𝑚 𝑋))

Theoremrrxtopn0 39096 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpen‘(ℝ^‘∅)) = 𝒫 {∅}

Theoremqndenserrnbllem 39097* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝐼 ≠ ∅)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))

Theoremqndenserrnbl 39098* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   (𝜑𝑋 ∈ (ℝ ↑𝑚 𝐼))    &   𝐷 = (dist‘(ℝ^‘𝐼))    &   (𝜑𝐸 ∈ ℝ+)       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦 ∈ (𝑋(ball‘𝐷)𝐸))

Theoremrrxtopn0b 39099 The topology of the zero-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(TopOpen‘(ℝ^‘∅)) = {∅, {∅}}

Theoremqndenserrnopnlem 39100* n-dimensional rational numbers are dense in the space of n-dimensional real numbers, with respect to the n-dimensional standard topology. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐼 ∈ Fin)    &   𝐽 = (TopOpen‘(ℝ^‘𝐼))    &   (𝜑𝑉𝐽)    &   (𝜑𝑋𝑉)    &   𝐷 = (dist‘(ℝ^‘𝐼))       (𝜑 → ∃𝑦 ∈ (ℚ ↑𝑚 𝐼)𝑦𝑉)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
 Copyright terms: Public domain < Previous  Next >