HomeHome Metamath Proof Explorer
Theorem List (p. 419 of 450)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28697)
  Hilbert Space Explorer  Hilbert Space Explorer
(28698-30220)
  Users' Mathboxes  Users' Mathboxes
(30221-44913)
 

Theorem List for Metamath Proof Explorer - 41801-41900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremiccshift 41801* A closed interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑇 ∈ ℝ)       (𝜑 → ((𝐴 + 𝑇)[,](𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴[,]𝐵)𝑤 = (𝑧 + 𝑇)})
 
Theoremiccsuble 41802 An upper bound to the distance of two elements in a closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))    &   (𝜑𝐷 ∈ (𝐴[,]𝐵))       (𝜑 → (𝐶𝐷) ≤ (𝐵𝐴))
 
Theoremiocopn 41803 A left-open right-closed interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ)    &   𝐾 = (topGen‘ran (,))    &   𝐽 = (𝐾t (𝐴(,]𝐵))    &   (𝜑𝐴𝐶)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 → (𝐶(,]𝐵) ∈ 𝐽)
 
Theoremeliccelioc 41804 Membership in a closed interval and in a left-open right-closed interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ*)       (𝜑 → (𝐶 ∈ (𝐴(,]𝐵) ↔ (𝐶 ∈ (𝐴[,]𝐵) ∧ 𝐶𝐴)))
 
Theoremiooshift 41805* An open interval shifted by a real number. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)    &   (𝜑𝑇 ∈ ℝ)       (𝜑 → ((𝐴 + 𝑇)(,)(𝐵 + 𝑇)) = {𝑤 ∈ ℂ ∣ ∃𝑧 ∈ (𝐴(,)𝐵)𝑤 = (𝑧 + 𝑇)})
 
Theoremiccintsng 41806 Intersection of two adiacent closed intervals is a singleton. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ*) ∧ (𝐴𝐵𝐵𝐶)) → ((𝐴[,]𝐵) ∩ (𝐵[,]𝐶)) = {𝐵})
 
Theoremicoiccdif 41807 Left-closed right-open interval gotten by a closed iterval taking away the upper bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ((𝐴[,]𝐵) ∖ {𝐵}))
 
Theoremicoopn 41808 A left-closed right-open interval is an open set of the standard topology restricted to an interval that contains the original interval and has the same lower bound. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   𝐾 = (topGen‘ran (,))    &   𝐽 = (𝐾t (𝐴[,)𝐵))    &   (𝜑𝐶𝐵)       (𝜑 → (𝐴[,)𝐶) ∈ 𝐽)
 
Theoremicoub 41809 A left-closed, right-open interval does not contain its upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴 ∈ ℝ* → ¬ 𝐵 ∈ (𝐴[,)𝐵))
 
Theoremeliccxrd 41810 Membership in a closed real interval. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴𝐶)    &   (𝜑𝐶𝐵)       (𝜑𝐶 ∈ (𝐴[,]𝐵))
 
Theorempnfel0pnf 41811 +∞ is a nonnegative extended real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
+∞ ∈ (0[,]+∞)
 
Theoremeliccnelico 41812 An element of a closed interval that is not a member of the left-closed right-open interval, must be the upper bound. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))    &   (𝜑 → ¬ 𝐶 ∈ (𝐴[,)𝐵))       (𝜑𝐶 = 𝐵)
 
Theoremeliccelicod 41813 A member of a closed interval that is not the upper bound, is a member of the left-closed, right-open interval. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))    &   (𝜑𝐶𝐵)       (𝜑𝐶 ∈ (𝐴[,)𝐵))
 
Theoremge0xrre 41814 A nonnegative extended real that is not +∞ is a real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝐴 ∈ (0[,]+∞) ∧ 𝐴 ≠ +∞) → 𝐴 ∈ ℝ)
 
Theoremge0lere 41815 A nonnegative extended Real number smaller than or equal to a Real number, is a Real number. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ (0[,]+∞))    &   (𝜑𝐵𝐴)       (𝜑𝐵 ∈ ℝ)
 
Theoremelicores 41816* Membership in a left-closed, right-open interval with real bounds. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝐴 ∈ ran ([,) ↾ (ℝ × ℝ)) ↔ ∃𝑥 ∈ ℝ ∃𝑦 ∈ ℝ 𝐴 = (𝑥[,)𝑦))
 
Theoreminficc 41817 The infimum of a nonempty set, included in a closed interval, is a member of the interval. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝑆 ⊆ (𝐴[,]𝐵))    &   (𝜑𝑆 ≠ ∅)       (𝜑 → inf(𝑆, ℝ*, < ) ∈ (𝐴[,]𝐵))
 
Theoremqinioo 41818 The rational numbers are dense in . (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → ((ℚ ∩ (𝐴(,)𝐵)) = ∅ ↔ 𝐵𝐴))
 
Theoremlenelioc 41819 A real number smaller than or equal to the lower bound of a left-open right-closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐶𝐴)       (𝜑 → ¬ 𝐶 ∈ (𝐴(,]𝐵))
 
Theoremioonct 41820 A nonempty open interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)    &   𝐶 = (𝐴(,)𝐵)       (𝜑 → ¬ 𝐶 ≼ ω)
 
Theoremxrgtnelicc 41821 A real number greater than the upper bound of a closed interval is not an element of the interval. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐵 < 𝐶)       (𝜑 → ¬ 𝐶 ∈ (𝐴[,]𝐵))
 
Theoremiccdificc 41822 The difference of two closed intervals with the same lower bound. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐴𝐵)       (𝜑 → ((𝐴[,]𝐶) ∖ (𝐴[,]𝐵)) = (𝐵(,]𝐶))
 
Theoremiocnct 41823 A nonempty left-open, right-closed interval is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)    &   𝐶 = (𝐴(,]𝐵)       (𝜑 → ¬ 𝐶 ≼ ω)
 
Theoremiccnct 41824 A closed interval, with more than one element is uncountable. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)    &   𝐶 = (𝐴[,]𝐵)       (𝜑 → ¬ 𝐶 ≼ ω)
 
Theoremiooiinicc 41825* A closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
(𝜑𝐴 ∈ ℝ)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 𝑛 ∈ ℕ ((𝐴 − (1 / 𝑛))(,)(𝐵 + (1 / 𝑛))) = (𝐴[,]𝐵))
 
Theoremiccgelbd 41826 An element of a closed interval is more than or equal to its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))       (𝜑𝐴𝐶)
 
Theoremiooltubd 41827 An element of an open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))       (𝜑𝐶 < 𝐵)
 
Theoremicoltubd 41828 An element of a left-closed right-open interval is less than its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,)𝐵))       (𝜑𝐶 < 𝐵)
 
Theoremqelioo 41829* The rational numbers are dense in *: any two extended real numbers have a rational between them. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐴 < 𝐵)       (𝜑 → ∃𝑥 ∈ ℚ 𝑥 ∈ (𝐴(,)𝐵))
 
Theoremtgqioo2 41830* Every open set of reals is the (countable) union of open interval with rational bounds. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
𝐽 = (topGen‘ran (,))    &   (𝜑𝐴𝐽)       (𝜑 → ∃𝑞(𝑞 ⊆ ((,) “ (ℚ × ℚ)) ∧ 𝐴 = 𝑞))
 
Theoremiccleubd 41831 An element of a closed interval is less than or equal to its upper bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,]𝐵))       (𝜑𝐶𝐵)
 
Theoremelioored 41832 A member of an open interval of reals is a real. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ (𝐵(,)𝐶))       (𝜑𝐴 ∈ ℝ)
 
Theoremioogtlbd 41833 An element of a closed interval is greater than its lower bound. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴(,)𝐵))       (𝜑𝐴 < 𝐶)
 
Theoremioofun 41834 (,) is a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
Fun (,)
 
Theoremicomnfinre 41835 A left-closed, right-open, interval of extended reals, intersected with the Reals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)       (𝜑 → ((-∞[,)𝐴) ∩ ℝ) = (-∞(,)𝐴))
 
Theoremsqrlearg 41836 The square compared with its argument. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ)       (𝜑 → ((𝐴↑2) ≤ 𝐴𝐴 ∈ (0[,]1)))
 
Theoremressiocsup 41837 If the supremum belongs to a set of reals, the set is a subset of the unbounded below, right-closed interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑆 = sup(𝐴, ℝ*, < )    &   (𝜑𝑆𝐴)    &   𝐼 = (-∞(,]𝑆)       (𝜑𝐴𝐼)
 
Theoremressioosup 41838 If the supremum does not belong to a set of reals, the set is a subset of the unbounded below, right-open interval, with upper bound equal to the supremum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑆 = sup(𝐴, ℝ*, < )    &   (𝜑 → ¬ 𝑆𝐴)    &   𝐼 = (-∞(,)𝑆)       (𝜑𝐴𝐼)
 
Theoremiooiinioc 41839* A left-open, right-closed interval expressed as the indexed intersection of open intervals. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ)       (𝜑 𝑛 ∈ ℕ (𝐴(,)(𝐵 + (1 / 𝑛))) = (𝐴(,]𝐵))
 
Theoremressiooinf 41840 If the infimum does not belong to a set of reals, the set is a subset of the unbounded above, left-open interval, with lower bound equal to the infimum. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐴 ⊆ ℝ)    &   𝑆 = inf(𝐴, ℝ*, < )    &   (𝜑 → ¬ 𝑆𝐴)    &   𝐼 = (𝑆(,)+∞)       (𝜑𝐴𝐼)
 
Theoremicogelbd 41841 An element of a left-closed right-open interval is greater than or equal to its lower bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴[,)𝐵))       (𝜑𝐴𝐶)
 
Theoremiocleubd 41842 An element of a left-open right-closed interval is smaller than or equal to its upper bound. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴(,]𝐵))       (𝜑𝐶𝐵)
 
Theoremuzinico 41843 An upper interval of integers is the intersection of the integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑𝑍 = (ℤ ∩ (𝑀[,)+∞)))
 
Theorempreimaiocmnf 41844* Preimage of a right-closed interval, unbounded below. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝐹:𝐴⟶ℝ)    &   (𝜑𝐵 ∈ ℝ*)       (𝜑 → (𝐹 “ (-∞(,]𝐵)) = {𝑥𝐴 ∣ (𝐹𝑥) ≤ 𝐵})
 
Theoremuzinico2 41845 An upper interval of integers is the intersection of a larger upper interval of integers with an upper part of the reals. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
(𝜑𝑁 ∈ (ℤ𝑀))       (𝜑 → (ℤ𝑁) = ((ℤ𝑀) ∩ (𝑁[,)+∞)))
 
Theoremuzinico3 41846 An upper interval of integers doesn't change when it's intersected with a left-closed, unbounded above interval, with the same lower bound. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑𝑍 = (𝑍 ∩ (𝑀[,)+∞)))
 
Theoremicossico2 41847 Condition for a closed-below, open-above interval to be a subset of a closed-below, open-above interval. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ ℝ*)    &   (𝜑𝐵𝐴)       (𝜑 → (𝐴[,)𝐶) ⊆ (𝐵[,)𝐶))
 
Theoremdmico 41848 The domain of the closed-below, open-above interval function. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
dom [,) = (ℝ* × ℝ*)
 
Theoremndmico 41849 The closed-below, open-above interval function's value is empty outside of its domain. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(¬ (𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴[,)𝐵) = ∅)
 
Theoremuzubioo 41850* The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → ∃𝑘 ∈ (𝑋(,)+∞)𝑘𝑍)
 
Theoremuzubico 41851* The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑋 ∈ ℝ)       (𝜑 → ∃𝑘 ∈ (𝑋[,)+∞)𝑘𝑍)
 
Theoremuzubioo2 41852* The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥(,)+∞)𝑘𝑍)
 
Theoremuzubico2 41853* The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)       (𝜑 → ∀𝑥 ∈ ℝ ∃𝑘 ∈ (𝑥[,)+∞)𝑘𝑍)
 
Theoremiocgtlbd 41854 An element of a left-open right-closed interval is larger than its lower bound. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(𝜑𝐴 ∈ ℝ*)    &   (𝜑𝐵 ∈ ℝ*)    &   (𝜑𝐶 ∈ (𝐴(,]𝐵))       (𝜑𝐴 < 𝐶)
 
Theoremxrtgioo2 41855 The topology on the extended reals coincides with the standard topology on the reals, when restricted to . (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(topGen‘ran (,)) = ((ordTop‘ ≤ ) ↾t ℝ)
 
Theoremtgioo4 41856 The standard topology on the reals is a subspace of the complex metric topology. (Contributed by Glauco Siliprandi, 5-Feb-2022.)
(topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
 
20.37.5  Finite sums
 
Theoremfsumclf 41857* Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsumcl 15092 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℂ)
 
Theoremfsummulc1f 41858* Closure of a finite sum of complex numbers 𝐴(𝑘). A version of fsummulc1 15142 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐶 ∈ ℂ)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (Σ𝑘𝐴 𝐵 · 𝐶) = Σ𝑘𝐴 (𝐵 · 𝐶))
 
Theoremfsumnncl 41859* Closure of a nonempty, finite sum of positive integers. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 ≠ ∅)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℕ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℕ)
 
Theoremfsumsplit1 41860* Separate out a term in a finite sum. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   𝑘𝐷    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶𝐴)    &   (𝑘 = 𝐶𝐵 = 𝐷)       (𝜑 → Σ𝑘𝐴 𝐵 = (𝐷 + Σ𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
 
Theoremfsumge0cl 41861* The finite sum of nonnegative reals is a nonnegative real. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ (0[,)+∞))       (𝜑 → Σ𝑘𝐴 𝐵 ∈ (0[,)+∞))
 
Theoremfsumf1of 41862* Re-index a finite sum using a bijection. Same as fsumf1o 15082, but using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
𝑘𝜑    &   𝑛𝜑    &   (𝑘 = 𝐺𝐵 = 𝐷)    &   (𝜑𝐶 ∈ Fin)    &   (𝜑𝐹:𝐶1-1-onto𝐴)    &   ((𝜑𝑛𝐶) → (𝐹𝑛) = 𝐺)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → Σ𝑘𝐴 𝐵 = Σ𝑛𝐶 𝐷)
 
Theoremfsumiunss 41863* Sum over a disjoint indexed union, intersected with a finite set 𝐷. Similar to fsumiun 15178, but here 𝐴 and 𝐵 need not be finite. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
((𝜑𝑥𝐴) → 𝐵𝑉)    &   (𝜑Disj 𝑥𝐴 𝐵)    &   ((𝜑𝑥𝐴𝑘𝐵) → 𝐶 ∈ ℂ)    &   (𝜑𝐷 ∈ Fin)       (𝜑 → Σ𝑘 𝑥𝐴 (𝐵𝐷)𝐶 = Σ𝑥 ∈ {𝑥𝐴 ∣ (𝐵𝐷) ≠ ∅}Σ𝑘 ∈ (𝐵𝐷)𝐶)
 
Theoremfsumreclf 41864* Closure of a finite sum of reals. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)       (𝜑 → Σ𝑘𝐴 𝐵 ∈ ℝ)
 
Theoremfsumlessf 41865* A shorter sum of nonnegative terms is smaller than a longer one. (Contributed by Glauco Siliprandi, 21-Nov-2020.)
𝑘𝜑    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℝ)    &   ((𝜑𝑘𝐴) → 0 ≤ 𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → Σ𝑘𝐶 𝐵 ≤ Σ𝑘𝐴 𝐵)
 
Theoremfsumsupp0 41866* Finite sum of function values, for a function of finite support. (Contributed by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐹:𝐴⟶ℂ)       (𝜑 → Σ𝑘 ∈ (𝐹 supp 0)(𝐹𝑘) = Σ𝑘𝐴 (𝐹𝑘))
 
Theoremfsumsermpt 41867* A finite sum expressed in terms of a partial sum of an infinite series. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝑀 ∈ ℤ)    &   𝑍 = (ℤ𝑀)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   𝐹 = (𝑛𝑍 ↦ Σ𝑘 ∈ (𝑀...𝑛)𝐴)    &   𝐺 = seq𝑀( + , (𝑘𝑍𝐴))       (𝜑𝐹 = 𝐺)
 
20.37.6  Finite multiplication of numbers and finite multiplication of functions
 
Theoremfmul01 41868* Multiplying a finite number of values in [ 0 , 1 ] , gives the final product itself a number in [ 0 , 1 ]. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑖𝐵    &   𝑖𝜑    &   𝐴 = seq𝐿( · , 𝐵)    &   (𝜑𝐿 ∈ ℤ)    &   (𝜑𝑀 ∈ (ℤ𝐿))    &   (𝜑𝐾 ∈ (𝐿...𝑀))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)       (𝜑 → (0 ≤ (𝐴𝐾) ∧ (𝐴𝐾) ≤ 1))
 
Theoremfmulcl 41869* If ' Y ' is closed under the multiplication of two functions, then Y is closed under the multiplication ( ' X ' ) of a finite number of functions. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))    &   𝑋 = (seq1(𝑃, 𝑈)‘𝑁)    &   (𝜑𝑁 ∈ (1...𝑀))    &   (𝜑𝑈:(1...𝑀)⟶𝑌)    &   ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)    &   (𝜑𝑇 ∈ V)       (𝜑𝑋𝑌)
 
Theoremfmuldfeqlem1 41870* induction step for the proof of fmuldfeq 41871. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑓𝜑    &   𝑔𝜑    &   𝑡𝑌    &   𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))    &   𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))    &   (𝜑𝑇 ∈ V)    &   (𝜑𝑈:(1...𝑀)⟶𝑌)    &   ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)    &   (𝜑𝑁 ∈ (1...𝑀))    &   (𝜑 → (𝑁 + 1) ∈ (1...𝑀))    &   (𝜑 → ((seq1(𝑃, 𝑈)‘𝑁)‘𝑡) = (seq1( · , (𝐹𝑡))‘𝑁))    &   ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)       ((𝜑𝑡𝑇) → ((seq1(𝑃, 𝑈)‘(𝑁 + 1))‘𝑡) = (seq1( · , (𝐹𝑡))‘(𝑁 + 1)))
 
Theoremfmuldfeq 41871* X and Z are two equivalent definitions of the finite product of real functions. Y is a set of real functions from a common domain T, Y is closed under function multiplication and U is a finite sequence of functions in Y. M is the number of functions multiplied together. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑖𝜑    &   𝑡𝑌    &   𝑃 = (𝑓𝑌, 𝑔𝑌 ↦ (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))))    &   𝑋 = (seq1(𝑃, 𝑈)‘𝑀)    &   𝐹 = (𝑡𝑇 ↦ (𝑖 ∈ (1...𝑀) ↦ ((𝑈𝑖)‘𝑡)))    &   𝑍 = (𝑡𝑇 ↦ (seq1( · , (𝐹𝑡))‘𝑀))    &   (𝜑𝑇 ∈ V)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝑈:(1...𝑀)⟶𝑌)    &   ((𝜑𝑓𝑌) → 𝑓:𝑇⟶ℝ)    &   ((𝜑𝑓𝑌𝑔𝑌) → (𝑡𝑇 ↦ ((𝑓𝑡) · (𝑔𝑡))) ∈ 𝑌)       ((𝜑𝑡𝑇) → (𝑋𝑡) = (𝑍𝑡))
 
Theoremfmul01lt1lem1 41872* Given a finite multiplication of values betweeen 0 and 1, a value larger than its first element is larger the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑖𝐵    &   𝑖𝜑    &   𝐴 = seq𝐿( · , 𝐵)    &   (𝜑𝐿 ∈ ℤ)    &   (𝜑𝑀 ∈ (ℤ𝐿))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑 → (𝐵𝐿) < 𝐸)       (𝜑 → (𝐴𝑀) < 𝐸)
 
Theoremfmul01lt1lem2 41873* Given a finite multiplication of values betweeen 0 and 1, a value 𝐸 larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑖𝐵    &   𝑖𝜑    &   𝐴 = seq𝐿( · , 𝐵)    &   (𝜑𝐿 ∈ ℤ)    &   (𝜑𝑀 ∈ (ℤ𝐿))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ∈ ℝ)    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → 0 ≤ (𝐵𝑖))    &   ((𝜑𝑖 ∈ (𝐿...𝑀)) → (𝐵𝑖) ≤ 1)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑𝐽 ∈ (𝐿...𝑀))    &   (𝜑 → (𝐵𝐽) < 𝐸)       (𝜑 → (𝐴𝑀) < 𝐸)
 
Theoremfmul01lt1 41874* Given a finite multiplication of values betweeen 0 and 1, a value E larger than any multiplicand, is larger than the whole multiplication. (Contributed by Glauco Siliprandi, 20-Apr-2017.)
𝑖𝐵    &   𝑖𝜑    &   𝑗𝐴    &   𝐴 = seq1( · , 𝐵)    &   (𝜑𝑀 ∈ ℕ)    &   (𝜑𝐵:(1...𝑀)⟶ℝ)    &   ((𝜑𝑖 ∈ (1...𝑀)) → 0 ≤ (𝐵𝑖))    &   ((𝜑𝑖 ∈ (1...𝑀)) → (𝐵𝑖) ≤ 1)    &   (𝜑𝐸 ∈ ℝ+)    &   (𝜑 → ∃𝑗 ∈ (1...𝑀)(𝐵𝑗) < 𝐸)       (𝜑 → (𝐴𝑀) < 𝐸)
 
Theoremcncfmptss 41875* A continuous complex function restricted to a subset is continuous, using maps-to notation. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑥𝐹    &   (𝜑𝐹 ∈ (𝐴cn𝐵))    &   (𝜑𝐶𝐴)       (𝜑 → (𝑥𝐶 ↦ (𝐹𝑥)) ∈ (𝐶cn𝐵))
 
Theoremrrpsscn 41876 The positive reals are a subset of the complex numbers. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
+ ⊆ ℂ
 
Theoremmulc1cncfg 41877* A version of mulc1cncf 23515 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 30-Jun-2017.)
𝑥𝐹    &   𝑥𝜑    &   (𝜑𝐹 ∈ (𝐴cn→ℂ))    &   (𝜑𝐵 ∈ ℂ)       (𝜑 → (𝑥𝐴 ↦ (𝐵 · (𝐹𝑥))) ∈ (𝐴cn→ℂ))
 
Theoreminfrglb 41878* The infimum of a nonempty bounded set of reals is the greatest lower bound. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
(((𝐴 ⊆ ℝ ∧ 𝐴 ≠ ∅ ∧ ∃𝑥 ∈ ℝ ∀𝑦𝐴 𝑥𝑦) ∧ 𝐵 ∈ ℝ) → (inf(𝐴, ℝ, < ) < 𝐵 ↔ ∃𝑧𝐴 𝑧 < 𝐵))
 
Theoremexpcnfg 41879* If 𝐹 is a complex continuous function and N is a fixed number, then F^N is continuous too. A generalization of expcncf 23532. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑥𝐹    &   (𝜑𝐹 ∈ (𝐴cn→ℂ))    &   (𝜑𝑁 ∈ ℕ0)       (𝜑 → (𝑥𝐴 ↦ ((𝐹𝑥)↑𝑁)) ∈ (𝐴cn→ℂ))
 
Theoremprodeq2ad 41880* Equality deduction for product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐵 = 𝐶)       (𝜑 → ∏𝑘𝐴 𝐵 = ∏𝑘𝐴 𝐶)
 
Theoremfprodsplit1 41881* Separate out a term in a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝜑𝐶𝐴)    &   ((𝜑𝑘 = 𝐶) → 𝐵 = 𝐷)       (𝜑 → ∏𝑘𝐴 𝐵 = (𝐷 · ∏𝑘 ∈ (𝐴 ∖ {𝐶})𝐵))
 
Theoremfprodexp 41882* Positive integer exponentiation of a finite product. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → ∏𝑘𝐴 (𝐵𝑁) = (∏𝑘𝐴 𝐵𝑁))
 
Theoremfprodabs2 41883* The absolute value of a finite product . (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)       (𝜑 → (abs‘∏𝑘𝐴 𝐵) = ∏𝑘𝐴 (abs‘𝐵))
 
Theoremfprod0 41884* A finite product with a zero term is zero. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝜑    &   𝑘𝐶    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)    &   (𝑘 = 𝐾𝐵 = 𝐶)    &   (𝜑𝐾𝐴)    &   (𝜑𝐶 = 0)       (𝜑 → ∏𝑘𝐴 𝐵 = 0)
 
Theoremmccllem 41885* * Induction step for mccl 41886. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
(𝜑𝐴 ∈ Fin)    &   (𝜑𝐶𝐴)    &   (𝜑𝐷 ∈ (𝐴𝐶))    &   (𝜑𝐵 ∈ (ℕ0m (𝐶 ∪ {𝐷})))    &   (𝜑 → ∀𝑏 ∈ (ℕ0m 𝐶)((!‘Σ𝑘𝐶 (𝑏𝑘)) / ∏𝑘𝐶 (!‘(𝑏𝑘))) ∈ ℕ)       (𝜑 → ((!‘Σ𝑘 ∈ (𝐶 ∪ {𝐷})(𝐵𝑘)) / ∏𝑘 ∈ (𝐶 ∪ {𝐷})(!‘(𝐵𝑘))) ∈ ℕ)
 
Theoremmccl 41886* A multinomial coefficient, in its standard domain, is a positive integer. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
𝑘𝐵    &   (𝜑𝐴 ∈ Fin)    &   (𝜑𝐵 ∈ (ℕ0m 𝐴))       (𝜑 → ((!‘Σ𝑘𝐴 (𝐵𝑘)) / ∏𝑘𝐴 (!‘(𝐵𝑘))) ∈ ℕ)
 
Theoremfprodcnlem 41887* A finite product of functions to complex numbers from a common topological space is continuous. Induction step. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))    &   (𝜑𝑍𝐴)    &   (𝜑𝑊 ∈ (𝐴𝑍))    &   (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝑍 𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ∏𝑘 ∈ (𝑍 ∪ {𝑊})𝐵) ∈ (𝐽 Cn 𝐾))
 
Theoremfprodcn 41888* A finite product of functions to complex numbers from a common topological space is continuous. The class expression for 𝐵 normally contains free variables 𝑘 and 𝑥 to index it. (Contributed by Glauco Siliprandi, 8-Apr-2021.)
𝑘𝜑    &   𝐾 = (TopOpen‘ℂfld)    &   (𝜑𝐽 ∈ (TopOn‘𝑋))    &   (𝜑𝐴 ∈ Fin)    &   ((𝜑𝑘𝐴) → (𝑥𝑋𝐵) ∈ (𝐽 Cn 𝐾))       (𝜑 → (𝑥𝑋 ↦ ∏𝑘𝐴 𝐵) ∈ (𝐽 Cn 𝐾))
 
20.37.7  Limits
 
Theoremclim1fr1 41889* A class of sequences of fractions that converge to 1. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝐹 = (𝑛 ∈ ℕ ↦ (((𝐴 · 𝑛) + 𝐵) / (𝐴 · 𝑛)))    &   (𝜑𝐴 ∈ ℂ)    &   (𝜑𝐴 ≠ 0)    &   (𝜑𝐵 ∈ ℂ)       (𝜑𝐹 ⇝ 1)
 
Theoremisumneg 41890* Negation of a converging sum. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → Σ𝑘𝑍 𝐴 ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) = 𝐴)    &   ((𝜑𝑘𝑍) → 𝐴 ∈ ℂ)    &   (𝜑 → seq𝑀( + , 𝐹) ∈ dom ⇝ )       (𝜑 → Σ𝑘𝑍 -𝐴 = -Σ𝑘𝑍 𝐴)
 
Theoremclimrec 41891* Limit of the reciprocal of a converging sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐴 ≠ 0)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))    &   (𝜑𝐻𝑊)       (𝜑𝐻 ⇝ (1 / 𝐴))
 
Theoremclimmulf 41892* A version of climmul 14991 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐹    &   𝑘𝐺    &   𝑘𝐻    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) · (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 · 𝐵))
 
Theoremclimexp 41893* The limit of natural powers, is the natural power of the limit. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐹    &   𝑘𝐻    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶ℂ)    &   (𝜑𝐹𝐴)    &   (𝜑𝑁 ∈ ℕ0)    &   (𝜑𝐻𝑉)    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘)↑𝑁))       (𝜑𝐻 ⇝ (𝐴𝑁))
 
Theoremcliminf 41894* A bounded monotonic nonincreasing sequence converges to the infimum of its range. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶ℝ)    &   ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))       (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
 
Theoremclimsuselem1 41895* The subsequence index 𝐼 has the expected properties: it belongs to the same upper integers as the original index, and it is always greater than or equal to the original index. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑 → (𝐼𝑀) ∈ 𝑍)    &   ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))       ((𝜑𝐾𝑍) → (𝐼𝐾) ∈ (ℤ𝐾))
 
Theoremclimsuse 41896* A subsequence 𝐺 of a converging sequence 𝐹, converges to the same limit. 𝐼 is the strictly increasing and it is used to index the subsequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐹    &   𝑘𝐺    &   𝑘𝐼    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝑋)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   (𝜑𝐹𝐴)    &   (𝜑 → (𝐼𝑀) ∈ 𝑍)    &   ((𝜑𝑘𝑍) → (𝐼‘(𝑘 + 1)) ∈ (ℤ‘((𝐼𝑘) + 1)))    &   (𝜑𝐺𝑌)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) = (𝐹‘(𝐼𝑘)))       (𝜑𝐺𝐴)
 
Theoremclimrecf 41897* A version of climrec 41891 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐺    &   𝑘𝐻    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐺𝐴)    &   (𝜑𝐴 ≠ 0)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = (1 / (𝐺𝑘)))    &   (𝜑𝐻𝑊)       (𝜑𝐻 ⇝ (1 / 𝐴))
 
Theoremclimneg 41898* Complex limit of the negative of a sequence. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐹    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)       (𝜑 → (𝑘𝑍 ↦ -(𝐹𝑘)) ⇝ -𝐴)
 
Theoremcliminff 41899* A version of climinf 41894 using bound-variable hypotheses instead of distinct variable conditions. (Contributed by Glauco Siliprandi, 29-Jun-2017.) (Revised by AV, 15-Sep-2020.)
𝑘𝜑    &   𝑘𝐹    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹:𝑍⟶ℝ)    &   ((𝜑𝑘𝑍) → (𝐹‘(𝑘 + 1)) ≤ (𝐹𝑘))    &   (𝜑 → ∃𝑥 ∈ ℝ ∀𝑘𝑍 𝑥 ≤ (𝐹𝑘))       (𝜑𝐹 ⇝ inf(ran 𝐹, ℝ, < ))
 
Theoremclimdivf 41900* Limit of the ratio of two converging sequences. (Contributed by Glauco Siliprandi, 29-Jun-2017.)
𝑘𝜑    &   𝑘𝐹    &   𝑘𝐺    &   𝑘𝐻    &   𝑍 = (ℤ𝑀)    &   (𝜑𝑀 ∈ ℤ)    &   (𝜑𝐹𝐴)    &   (𝜑𝐻𝑋)    &   (𝜑𝐺𝐵)    &   (𝜑𝐵 ≠ 0)    &   ((𝜑𝑘𝑍) → (𝐹𝑘) ∈ ℂ)    &   ((𝜑𝑘𝑍) → (𝐺𝑘) ∈ (ℂ ∖ {0}))    &   ((𝜑𝑘𝑍) → (𝐻𝑘) = ((𝐹𝑘) / (𝐺𝑘)))       (𝜑𝐻 ⇝ (𝐴 / 𝐵))
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44900 450 44901-44913
  Copyright terms: Public domain < Previous  Next >