HomeHome Metamath Proof Explorer
Theorem List (p. 59 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 5801-5900   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorem2elresin 5801 Membership in two functions restricted by each other's domain. (Contributed by NM, 8-Aug-1994.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵) → ((⟨𝑥, 𝑦⟩ ∈ 𝐹 ∧ ⟨𝑥, 𝑧⟩ ∈ 𝐺) ↔ (⟨𝑥, 𝑦⟩ ∈ (𝐹 ↾ (𝐴𝐵)) ∧ ⟨𝑥, 𝑧⟩ ∈ (𝐺 ↾ (𝐴𝐵)))))
 
Theoremfnssresb 5802 Restriction of a function with a subclass of its domain. (Contributed by NM, 10-Oct-2007.)
(𝐹 Fn 𝐴 → ((𝐹𝐵) Fn 𝐵𝐵𝐴))
 
Theoremfnssres 5803 Restriction of a function with a subclass of its domain. (Contributed by NM, 2-Aug-1994.)
((𝐹 Fn 𝐴𝐵𝐴) → (𝐹𝐵) Fn 𝐵)
 
Theoremfnresin1 5804 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐴𝐵)) Fn (𝐴𝐵))
 
Theoremfnresin2 5805 Restriction of a function's domain with an intersection. (Contributed by NM, 9-Aug-1994.)
(𝐹 Fn 𝐴 → (𝐹 ↾ (𝐵𝐴)) Fn (𝐵𝐴))
 
Theoremfnres 5806* An equivalence for functionality of a restriction. Compare dffun8 5716. (Contributed by Mario Carneiro, 20-May-2015.)
((𝐹𝐴) Fn 𝐴 ↔ ∀𝑥𝐴 ∃!𝑦 𝑥𝐹𝑦)
 
Theoremfnresi 5807 Functionality and domain of restricted identity. (Contributed by NM, 27-Aug-2004.)
( I ↾ 𝐴) Fn 𝐴
 
Theoremfnima 5808 The image of a function's domain is its range. (Contributed by NM, 4-Nov-2004.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴 → (𝐹𝐴) = ran 𝐹)
 
Theoremfn0 5809 A function with empty domain is empty. (Contributed by NM, 15-Apr-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn ∅ ↔ 𝐹 = ∅)
 
Theoremfnimadisj 5810 A class that is disjoint with the domain of a function has an empty image under the function. (Contributed by FL, 24-Jan-2007.)
((𝐹 Fn 𝐴 ∧ (𝐴𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfnimaeq0 5811 Images under a function never map nonempty sets to empty sets. EDITORIAL: usable in fnwe2lem2 36529. (Contributed by Stefan O'Rear, 21-Jan-2015.)
((𝐹 Fn 𝐴𝐵𝐴) → ((𝐹𝐵) = ∅ ↔ 𝐵 = ∅))
 
Theoremdfmpt3 5812 Alternate definition for the "maps to" notation df-mpt 4543. (Contributed by Mario Carneiro, 30-Dec-2016.)
(𝑥𝐴𝐵) = 𝑥𝐴 ({𝑥} × {𝐵})
 
Theoremmptfnf 5813 The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴       (∀𝑥𝐴 𝐵 ∈ V ↔ (𝑥𝐴𝐵) Fn 𝐴)
 
Theoremfnmptf 5814 The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.) (Revised by Thierry Arnoux, 10-May-2017.)
𝑥𝐴       (∀𝑥𝐴 𝐵𝑉 → (𝑥𝐴𝐵) Fn 𝐴)
 
Theoremfnopabg 5815* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 30-Jan-2004.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       (∀𝑥𝐴 ∃!𝑦𝜑𝐹 Fn 𝐴)
 
Theoremfnopab 5816* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 5-Mar-1996.)
(𝑥𝐴 → ∃!𝑦𝜑)    &   𝐹 = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝜑)}       𝐹 Fn 𝐴
 
Theoremmptfng 5817* The maps-to notation defines a function with domain. (Contributed by Scott Fenton, 21-Mar-2011.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵 ∈ V ↔ 𝐹 Fn 𝐴)
 
Theoremfnmpt 5818* The maps-to notation defines a function with domain. (Contributed by NM, 9-Apr-2013.)
𝐹 = (𝑥𝐴𝐵)       (∀𝑥𝐴 𝐵𝑉𝐹 Fn 𝐴)
 
Theoremmpt0 5819 A mapping operation with empty domain. (Contributed by Mario Carneiro, 28-Dec-2014.)
(𝑥 ∈ ∅ ↦ 𝐴) = ∅
 
Theoremfnmpti 5820* Functionality and domain of an ordered-pair class abstraction. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       𝐹 Fn 𝐴
 
Theoremdmmpti 5821* Domain of the mapping operation. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐵 ∈ V    &   𝐹 = (𝑥𝐴𝐵)       dom 𝐹 = 𝐴
 
Theoremdmmptd 5822* The domain of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
𝐴 = (𝑥𝐵𝐶)    &   ((𝜑𝑥𝐵) → 𝐶𝑉)       (𝜑 → dom 𝐴 = 𝐵)
 
Theoremmptun 5823 Union of mappings which are mutually compatible. (Contributed by Mario Carneiro, 31-Aug-2015.)
(𝑥 ∈ (𝐴𝐵) ↦ 𝐶) = ((𝑥𝐴𝐶) ∪ (𝑥𝐵𝐶))
 
Theoremfeq1 5824 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐹 = 𝐺 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2 5825 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3 5826 Equality theorem for functions. (Contributed by NM, 1-Aug-1994.)
(𝐴 = 𝐵 → (𝐹:𝐶𝐴𝐹:𝐶𝐵))
 
Theoremfeq23 5827 Equality theorem for functions. (Contributed by FL, 14-Jul-2007.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremfeq1d 5828 Equality deduction for functions. (Contributed by NM, 19-Feb-2008.)
(𝜑𝐹 = 𝐺)       (𝜑 → (𝐹:𝐴𝐵𝐺:𝐴𝐵))
 
Theoremfeq2d 5829 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐹:𝐵𝐶))
 
Theoremfeq3d 5830 Equality deduction for functions. (Contributed by AV, 1-Jan-2020.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝑋𝐴𝐹:𝑋𝐵))
 
Theoremfeq12d 5831 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐶))
 
Theoremfeq123d 5832 Equality deduction for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
(𝜑𝐹 = 𝐺)    &   (𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐹:𝐴𝐶𝐺:𝐵𝐷))
 
Theoremfeq123 5833 Equality theorem for functions. (Contributed by FL, 16-Nov-2008.)
((𝐹 = 𝐺𝐴 = 𝐶𝐵 = 𝐷) → (𝐹:𝐴𝐵𝐺:𝐶𝐷))
 
Theoremfeq1i 5834 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐹 = 𝐺       (𝐹:𝐴𝐵𝐺:𝐴𝐵)
 
Theoremfeq2i 5835 Equality inference for functions. (Contributed by NM, 5-Sep-2011.)
𝐴 = 𝐵       (𝐹:𝐴𝐶𝐹:𝐵𝐶)
 
Theoremfeq12i 5836 Equality inference for functions. (Contributed by AV, 7-Feb-2021.)
𝐹 = 𝐺    &   𝐴 = 𝐵       (𝐹:𝐴𝐶𝐺:𝐵𝐶)
 
Theoremfeq23i 5837 Equality inference for functions. (Contributed by Paul Chapman, 22-Jun-2011.)
𝐴 = 𝐶    &   𝐵 = 𝐷       (𝐹:𝐴𝐵𝐹:𝐶𝐷)
 
Theoremfeq23d 5838 Equality deduction for functions. (Contributed by NM, 8-Jun-2013.)
(𝜑𝐴 = 𝐶)    &   (𝜑𝐵 = 𝐷)       (𝜑 → (𝐹:𝐴𝐵𝐹:𝐶𝐷))
 
Theoremnff 5839 Bound-variable hypothesis builder for a mapping. (Contributed by NM, 29-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴𝐵
 
Theoremsbcfng 5840* Distribute proper substitution through the function predicate with a domain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹 Fn 𝐴𝑋 / 𝑥𝐹 Fn 𝑋 / 𝑥𝐴))
 
Theoremsbcfg 5841* Distribute proper substitution through the function predicate with domain and codomain. (Contributed by Alexander van der Vekens, 15-Jul-2018.)
(𝑋𝑉 → ([𝑋 / 𝑥]𝐹:𝐴𝐵𝑋 / 𝑥𝐹:𝑋 / 𝑥𝐴𝑋 / 𝑥𝐵))
 
Theoremelimf 5842 Eliminate a mapping hypothesis for the weak deduction theorem dedth 3992, when a special case 𝐺:𝐴𝐵 is provable, in order to convert 𝐹:𝐴𝐵 from a hypothesis to an antecedent. (Contributed by NM, 24-Aug-2006.)
𝐺:𝐴𝐵       if(𝐹:𝐴𝐵, 𝐹, 𝐺):𝐴𝐵
 
Theoremffn 5843 A mapping is a function with domain. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵𝐹 Fn 𝐴)
 
Theoremffnd 5844 A mapping is a function with domain, deduction form. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹 Fn 𝐴)
 
Theoremdffn2 5845 Any function is a mapping into V. (Contributed by NM, 31-Oct-1995.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹 Fn 𝐴𝐹:𝐴⟶V)
 
Theoremffun 5846 A mapping is a function. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Fun 𝐹)
 
Theoremffund 5847 A mapping is a function, deduction version. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑 → Fun 𝐹)
 
Theoremfrel 5848 A mapping is a relation. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → Rel 𝐹)
 
Theoremfdm 5849 The domain of a mapping. (Contributed by NM, 2-Aug-1994.)
(𝐹:𝐴𝐵 → dom 𝐹 = 𝐴)
 
Theoremfdmi 5850 The domain of a mapping. (Contributed by NM, 28-Jul-2008.)
𝐹:𝐴𝐵       dom 𝐹 = 𝐴
 
Theoremfrn 5851 The range of a mapping. (Contributed by NM, 3-Aug-1994.)
(𝐹:𝐴𝐵 → ran 𝐹𝐵)
 
Theoremdffn3 5852 A function maps to its range. (Contributed by NM, 1-Sep-1999.)
(𝐹 Fn 𝐴𝐹:𝐴⟶ran 𝐹)
 
Theoremffrn 5853 A function maps to its range. (Contributed by Glauco Siliprandi, 3-Mar-2021.)
(𝐹:𝐴𝐵𝐹:𝐴⟶ran 𝐹)
 
Theoremfss 5854 Expanding the codomain of a mapping. (Contributed by NM, 10-May-1998.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐴𝐵𝐵𝐶) → 𝐹:𝐴𝐶)
 
Theoremfssd 5855 Expanding the codomain of a mapping, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐵𝐶)       (𝜑𝐹:𝐴𝐶)
 
Theoremfco 5856 Composition of two mappings. (Contributed by NM, 29-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
((𝐹:𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfco2 5857 Functionality of a composition with weakened out of domain condition on the first argument. (Contributed by Stefan O'Rear, 11-Mar-2015.)
(((𝐹𝐵):𝐵𝐶𝐺:𝐴𝐵) → (𝐹𝐺):𝐴𝐶)
 
Theoremfssxp 5858 A mapping is a class of ordered pairs. (Contributed by NM, 3-Aug-1994.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵𝐹 ⊆ (𝐴 × 𝐵))
 
Theoremfunssxp 5859 Two ways of specifying a partial function from 𝐴 to 𝐵. (Contributed by NM, 13-Nov-2007.)
((Fun 𝐹𝐹 ⊆ (𝐴 × 𝐵)) ↔ (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremffdm 5860 A mapping is a partial function. (Contributed by NM, 25-Nov-2007.)
(𝐹:𝐴𝐵 → (𝐹:dom 𝐹𝐵 ∧ dom 𝐹𝐴))
 
Theoremffdmd 5861 The domain of a function. (Contributed by Glauco Siliprandi, 26-Jun-2021.)
(𝜑𝐹:𝐴𝐵)       (𝜑𝐹:dom 𝐹𝐵)
 
Theoremfdmrn 5862 A different way to write 𝐹 is a function. (Contributed by Thierry Arnoux, 7-Dec-2016.)
(Fun 𝐹𝐹:dom 𝐹⟶ran 𝐹)
 
Theoremopelf 5863 The members of an ordered pair element of a mapping belong to the mapping's domain and codomain. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐹:𝐴𝐵 ∧ ⟨𝐶, 𝐷⟩ ∈ 𝐹) → (𝐶𝐴𝐷𝐵))
 
Theoremfun 5864 The union of two functions with disjoint domains. (Contributed by NM, 22-Sep-2004.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐷) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶(𝐶𝐷))
 
Theoremfun2 5865 The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
(((𝐹:𝐴𝐶𝐺:𝐵𝐶) ∧ (𝐴𝐵) = ∅) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 
Theoremfnfco 5866 Composition of two functions. (Contributed by NM, 22-May-2006.)
((𝐹 Fn 𝐴𝐺:𝐵𝐴) → (𝐹𝐺) Fn 𝐵)
 
Theoremfssres 5867 Restriction of a function with a subclass of its domain. (Contributed by NM, 23-Sep-2004.)
((𝐹:𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfssresd 5868 Restriction of a function with a subclass of its domain, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐶𝐴)       (𝜑 → (𝐹𝐶):𝐶𝐵)
 
Theoremfssres2 5869 Restriction of a restricted function with a subclass of its domain. (Contributed by NM, 21-Jul-2005.)
(((𝐹𝐴):𝐴𝐵𝐶𝐴) → (𝐹𝐶):𝐶𝐵)
 
Theoremfresin 5870 An identity for the mapping relationship under restriction. (Contributed by Scott Fenton, 4-Sep-2011.) (Proof shortened by Mario Carneiro, 26-May-2016.)
(𝐹:𝐴𝐵 → (𝐹𝑋):(𝐴𝑋)⟶𝐵)
 
Theoremresasplit 5871 If two functions agree on their common domain, express their union as a union of three functions with pairwise disjoint domains. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐹 Fn 𝐴𝐺 Fn 𝐵 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) = ((𝐹 ↾ (𝐴𝐵)) ∪ ((𝐹 ↾ (𝐴𝐵)) ∪ (𝐺 ↾ (𝐵𝐴)))))
 
Theoremfresaun 5872 The union of two functions which agree on their common domain is a function. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺):(𝐴𝐵)⟶𝐶)
 
Theoremfresaunres2 5873 From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Stefan O'Rear, 9-Oct-2014.)
((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐵) = 𝐺)
 
Theoremfresaunres1 5874 From the union of two functions that agree on the domain overlap, either component can be recovered by restriction. (Contributed by Mario Carneiro, 16-Feb-2015.)
((𝐹:𝐴𝐶𝐺:𝐵𝐶 ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → ((𝐹𝐺) ↾ 𝐴) = 𝐹)
 
Theoremfcoi1 5875 Composition of a mapping and restricted identity. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (𝐹 ∘ ( I ↾ 𝐴)) = 𝐹)
 
Theoremfcoi2 5876 Composition of restricted identity and a mapping. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴𝐵 → (( I ↾ 𝐵) ∘ 𝐹) = 𝐹)
 
Theoremfeu 5877* There is exactly one value of a function in its codomain. (Contributed by NM, 10-Dec-2003.)
((𝐹:𝐴𝐵𝐶𝐴) → ∃!𝑦𝐵𝐶, 𝑦⟩ ∈ 𝐹)
 
Theoremfimass 5878 The image of a class is a subset of its codomain. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐹:𝐴𝐵 → (𝐹𝑋) ⊆ 𝐵)
 
Theoremfcnvres 5879 The converse of a restriction of a function. (Contributed by NM, 26-Mar-1998.)
(𝐹:𝐴𝐵(𝐹𝐴) = (𝐹𝐵))
 
Theoremfimacnvdisj 5880 The preimage of a class disjoint with a mapping's codomain is empty. (Contributed by FL, 24-Jan-2007.)
((𝐹:𝐴𝐵 ∧ (𝐵𝐶) = ∅) → (𝐹𝐶) = ∅)
 
Theoremfint 5881* Function into an intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
𝐵 ≠ ∅       (𝐹:𝐴 𝐵 ↔ ∀𝑥𝐵 𝐹:𝐴𝑥)
 
Theoremfin 5882 Mapping into an intersection. (Contributed by NM, 14-Sep-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
(𝐹:𝐴⟶(𝐵𝐶) ↔ (𝐹:𝐴𝐵𝐹:𝐴𝐶))
 
Theoremf0 5883 The empty function. (Contributed by NM, 14-Aug-1999.)
∅:∅⟶𝐴
 
Theoremf00 5884 A class is a function with empty codomain iff it and its domain are empty. (Contributed by NM, 10-Dec-2003.)
(𝐹:𝐴⟶∅ ↔ (𝐹 = ∅ ∧ 𝐴 = ∅))
 
Theoremf0bi 5885 A function with empty domain is empty. (Contributed by Alexander van der Vekens, 30-Jun-2018.)
(𝐹:∅⟶𝑋𝐹 = ∅)
 
Theoremf0dom0 5886 A function is empty iff it has an empty domain. (Contributed by AV, 10-Feb-2019.)
(𝐹:𝑋𝑌 → (𝑋 = ∅ ↔ 𝐹 = ∅))
 
Theoremf0rn0 5887* If there is no element in the range of a function, its domain must be empty. (Contributed by Alexander van der Vekens, 12-Jul-2018.)
((𝐸:𝑋𝑌 ∧ ¬ ∃𝑦𝑌 𝑦 ∈ ran 𝐸) → 𝑋 = ∅)
 
Theoremfconst 5888 A Cartesian product with a singleton is a constant function. (Contributed by NM, 14-Aug-1999.) (Proof shortened by Andrew Salmon, 17-Sep-2011.)
𝐵 ∈ V       (𝐴 × {𝐵}):𝐴⟶{𝐵}
 
Theoremfconstg 5889 A Cartesian product with a singleton is a constant function. (Contributed by NM, 19-Oct-2004.)
(𝐵𝑉 → (𝐴 × {𝐵}):𝐴⟶{𝐵})
 
Theoremfnconstg 5890 A Cartesian product with a singleton is a constant function. (Contributed by NM, 24-Jul-2014.)
(𝐵𝑉 → (𝐴 × {𝐵}) Fn 𝐴)
 
Theoremfconst6g 5891 Constant function with loose range. (Contributed by Stefan O'Rear, 1-Feb-2015.)
(𝐵𝐶 → (𝐴 × {𝐵}):𝐴𝐶)
 
Theoremfconst6 5892 A constant function as a mapping. (Contributed by Jeff Madsen, 30-Nov-2009.) (Revised by Mario Carneiro, 22-Apr-2015.)
𝐵𝐶       (𝐴 × {𝐵}):𝐴𝐶
 
Theoremf1eq1 5893 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐹 = 𝐺 → (𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵))
 
Theoremf1eq2 5894 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐴1-1𝐶𝐹:𝐵1-1𝐶))
 
Theoremf1eq3 5895 Equality theorem for one-to-one functions. (Contributed by NM, 10-Feb-1997.)
(𝐴 = 𝐵 → (𝐹:𝐶1-1𝐴𝐹:𝐶1-1𝐵))
 
Theoremnff1 5896 Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
𝑥𝐹    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐹:𝐴1-1𝐵
 
Theoremdff12 5897* Alternate definition of a one-to-one function. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑦∃*𝑥 𝑥𝐹𝑦))
 
Theoremf1f 5898 A one-to-one mapping is a mapping. (Contributed by NM, 31-Dec-1996.)
(𝐹:𝐴1-1𝐵𝐹:𝐴𝐵)
 
Theoremf1fn 5899 A one-to-one mapping is a function on its domain. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵𝐹 Fn 𝐴)
 
Theoremf1fun 5900 A one-to-one mapping is a function. (Contributed by NM, 8-Mar-2014.)
(𝐹:𝐴1-1𝐵 → Fun 𝐹)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >