HomeHome Metamath Proof Explorer
Theorem List (p. 60 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 5901-6000   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremresmptf 5901 Restriction of the mapping operation. (Contributed by Thierry Arnoux, 28-Mar-2017.)
𝑥𝐴    &   𝑥𝐵       (𝐵𝐴 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
 
Theoremresmptd 5902* Restriction of the mapping operation, deduction form. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
(𝜑𝐵𝐴)       (𝜑 → ((𝑥𝐴𝐶) ↾ 𝐵) = (𝑥𝐵𝐶))
 
Theoremdfres2 5903* Alternate definition of the restriction operation. (Contributed by Mario Carneiro, 5-Nov-2013.)
(𝑅𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑥𝑅𝑦)}
 
Theoremmptss 5904* Sufficient condition for inclusion among two functions in maps-to notation. (Contributed by Glauco Siliprandi, 17-Aug-2020.)
(𝐴𝐵 → (𝑥𝐴𝐶) ⊆ (𝑥𝐵𝐶))
 
Theoremelidinxp 5905* Characterization of the elements of the intersection of the identity relation with a Cartesian product. (Contributed by Peter Mazsa, 9-Sep-2022.)
(𝐶 ∈ ( I ∩ (𝐴 × 𝐵)) ↔ ∃𝑥 ∈ (𝐴𝐵)𝐶 = ⟨𝑥, 𝑥⟩)
 
Theoremelidinxpid 5906* Characterization of the elements of the intersection of the identity relation with a Cartesian square. (Contributed by Peter Mazsa, 9-Sep-2022.)
(𝐵 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ ∃𝑥𝐴 𝐵 = ⟨𝑥, 𝑥⟩)
 
Theoremelrid 5907* Characterization of the elements of a restricted identity relation. (Contributed by BJ, 28-Aug-2022.) (Proof shortened by Peter Mazsa, 9-Sep-2022.)
(𝐴 ∈ ( I ↾ 𝑋) ↔ ∃𝑥𝑋 𝐴 = ⟨𝑥, 𝑥⟩)
 
Theoremidinxpres 5908 The intersection of the identity relation with a cartesian product is the restriction of the identity relation to the intersection of the factors. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) Generalize statement from cartesian square (now idinxpresid 5909) to cartesian product. (Revised by BJ, 23-Dec-2023.)
( I ∩ (𝐴 × 𝐵)) = ( I ↾ (𝐴𝐵))
 
Theoremidinxpresid 5909 The intersection of the identity relation with the cartesian square of a class is the restriction of the identity relation to that class. (Contributed by FL, 2-Aug-2009.) (Proof shortened by Peter Mazsa, 9-Sep-2022.) (Proof shortened by BJ, 23-Dec-2023.)
( I ∩ (𝐴 × 𝐴)) = ( I ↾ 𝐴)
 
Theoremidssxp 5910 A diagonal set as a subset of a Cartesian square. (Contributed by Thierry Arnoux, 29-Dec-2019.) (Proof shortened by BJ, 9-Sep-2022.)
( I ↾ 𝐴) ⊆ (𝐴 × 𝐴)
 
Theoremopabresid 5911* The restricted identity relation expressed as an ordered-pair class abstraction. (Contributed by FL, 25-Apr-2012.)
( I ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)}
 
Theoremmptresid 5912* The restricted identity relation expressed in maps-to notation. (Contributed by FL, 25-Apr-2012.)
( I ↾ 𝐴) = (𝑥𝐴𝑥)
 
TheoremopabresidOLD 5913* Obsolete version of opabresid 5911 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
{⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦 = 𝑥)} = ( I ↾ 𝐴)
 
TheoremmptresidOLD 5914* Obsolete version of mptresid 5912 as of 26-Dec-2023. (Contributed by FL, 25-Apr-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝑥𝐴𝑥) = ( I ↾ 𝐴)
 
Theoremdmresi 5915 The domain of a restricted identity function. (Contributed by NM, 27-Aug-2004.)
dom ( I ↾ 𝐴) = 𝐴
 
Theoremrestidsing 5916 Restriction of the identity to a singleton. (Contributed by FL, 2-Aug-2009.) (Proof shortened by JJ, 25-Aug-2021.) (Proof shortened by Peter Mazsa, 6-Oct-2022.)
( I ↾ {𝐴}) = ({𝐴} × {𝐴})
 
Theoremiresn0n0 5917 The identity function restricted to a class 𝐴 is empty iff the class 𝐴 is empty. (Contributed by AV, 30-Jan-2024.)
(𝐴 = ∅ ↔ ( I ↾ 𝐴) = ∅)
 
Theoremimaeq1 5918 Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
(𝐴 = 𝐵 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremimaeq2 5919 Equality theorem for image. (Contributed by NM, 14-Aug-1994.)
(𝐴 = 𝐵 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremimaeq1i 5920 Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐴𝐶) = (𝐵𝐶)
 
Theoremimaeq2i 5921 Equality theorem for image. (Contributed by NM, 21-Dec-2008.)
𝐴 = 𝐵       (𝐶𝐴) = (𝐶𝐵)
 
Theoremimaeq1d 5922 Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐴𝐶) = (𝐵𝐶))
 
Theoremimaeq2d 5923 Equality theorem for image. (Contributed by FL, 15-Dec-2006.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝐶𝐴) = (𝐶𝐵))
 
Theoremimaeq12d 5924 Equality theorem for image. (Contributed by Mario Carneiro, 4-Dec-2016.)
(𝜑𝐴 = 𝐵)    &   (𝜑𝐶 = 𝐷)       (𝜑 → (𝐴𝐶) = (𝐵𝐷))
 
Theoremdfima2 5925* Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 19-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
 
Theoremdfima3 5926* Alternate definition of image. Compare definition (d) of [Enderton] p. 44. (Contributed by NM, 14-Aug-1994.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = {𝑦 ∣ ∃𝑥(𝑥𝐵 ∧ ⟨𝑥, 𝑦⟩ ∈ 𝐴)}
 
Theoremelimag 5927* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 20-Jan-2007.)
(𝐴𝑉 → (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴))
 
Theoremelima 5928* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 19-Apr-2004.)
𝐴 ∈ V       (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
 
Theoremelima2 5929* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.)
𝐴 ∈ V       (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
 
Theoremelima3 5930* Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 14-Aug-1994.)
𝐴 ∈ V       (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶 ∧ ⟨𝑥, 𝐴⟩ ∈ 𝐵))
 
Theoremnfima 5931 Bound-variable hypothesis builder for image. (Contributed by NM, 30-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝑥𝐴    &   𝑥𝐵       𝑥(𝐴𝐵)
 
Theoremnfimad 5932 Deduction version of bound-variable hypothesis builder nfima 5931. (Contributed by FL, 15-Dec-2006.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝜑𝑥𝐴)    &   (𝜑𝑥𝐵)       (𝜑𝑥(𝐴𝐵))
 
Theoremimadmrn 5933 The image of the domain of a class is the range of the class. (Contributed by NM, 14-Aug-1994.)
(𝐴 “ dom 𝐴) = ran 𝐴
 
Theoremimassrn 5934 The image of a class is a subset of its range. Theorem 3.16(xi) of [Monk1] p. 39. (Contributed by NM, 31-Mar-1995.)
(𝐴𝐵) ⊆ ran 𝐴
 
Theoremmptima 5935* Image of a function in maps-to notation. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
((𝑥𝐴𝐵) “ 𝐶) = ran (𝑥 ∈ (𝐴𝐶) ↦ 𝐵)
 
Theoremimai 5936 Image under the identity relation. Theorem 3.16(viii) of [Monk1] p. 38. (Contributed by NM, 30-Apr-1998.)
( I “ 𝐴) = 𝐴
 
Theoremrnresi 5937 The range of the restricted identity function. (Contributed by NM, 27-Aug-2004.)
ran ( I ↾ 𝐴) = 𝐴
 
Theoremresiima 5938 The image of a restriction of the identity function. (Contributed by FL, 31-Dec-2006.)
(𝐵𝐴 → (( I ↾ 𝐴) “ 𝐵) = 𝐵)
 
Theoremima0 5939 Image of the empty set. Theorem 3.16(ii) of [Monk1] p. 38. (Contributed by NM, 20-May-1998.)
(𝐴 “ ∅) = ∅
 
Theorem0ima 5940 Image under the empty relation. (Contributed by FL, 11-Jan-2007.)
(∅ “ 𝐴) = ∅
 
Theoremcsbima12 5941 Move class substitution in and out of the image of a function. (Contributed by FL, 15-Dec-2006.) (Revised by NM, 20-Aug-2018.)
𝐴 / 𝑥(𝐹𝐵) = (𝐴 / 𝑥𝐹𝐴 / 𝑥𝐵)
 
Theoremimadisj 5942 A class whose image under another is empty is disjoint with the other's domain. (Contributed by FL, 24-Jan-2007.)
((𝐴𝐵) = ∅ ↔ (dom 𝐴𝐵) = ∅)
 
Theoremcnvimass 5943 A preimage under any class is included in the domain of the class. (Contributed by FL, 29-Jan-2007.)
(𝐴𝐵) ⊆ dom 𝐴
 
Theoremcnvimarndm 5944 The preimage of the range of a class is the domain of the class. (Contributed by Jeff Hankins, 15-Jul-2009.)
(𝐴 “ ran 𝐴) = dom 𝐴
 
Theoremimasng 5945* The image of a singleton. (Contributed by NM, 8-May-2005.)
(𝐴𝐵 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
 
Theoremrelimasn 5946* The image of a singleton. (Contributed by NM, 20-May-1998.)
(Rel 𝑅 → (𝑅 “ {𝐴}) = {𝑦𝐴𝑅𝑦})
 
Theoremelrelimasn 5947 Elementhood in the image of a singleton. (Contributed by Mario Carneiro, 3-Nov-2015.)
(Rel 𝑅 → (𝐵 ∈ (𝑅 “ {𝐴}) ↔ 𝐴𝑅𝐵))
 
Theoremelimasn 5948 Membership in an image of a singleton. (Contributed by NM, 15-Mar-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐵 ∈ V    &   𝐶 ∈ V       (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
 
Theoremelimasng 5949 Membership in an image of a singleton. (Contributed by Raph Levien, 21-Oct-2006.)
((𝐵𝑉𝐶𝑊) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
 
Theoremelimasni 5950 Membership in an image of a singleton. (Contributed by NM, 5-Aug-2010.)
(𝐶 ∈ (𝐴 “ {𝐵}) → 𝐵𝐴𝐶)
 
Theoremargs 5951* Two ways to express the class of unique-valued arguments of 𝐹, which is the same as the domain of 𝐹 whenever 𝐹 is a function. The left-hand side of the equality is from Definition 10.2 of [Quine] p. 65. Quine uses the notation "arg 𝐹 " for this class (for which we have no separate notation). Observe the resemblance to the alternate definition dffv4 6661 of function value, which is based on the idea in Quine's definition. (Contributed by NM, 8-May-2005.)
{𝑥 ∣ ∃𝑦(𝐹 “ {𝑥}) = {𝑦}} = {𝑥 ∣ ∃!𝑦 𝑥𝐹𝑦}
 
Theoremeliniseg 5952 Membership in an initial segment. The idiom (𝐴 “ {𝐵}), meaning {𝑥𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
𝐶 ∈ V       (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
 
Theoremepini 5953 Any set is equal to its preimage under the converse membership relation. (Contributed by Mario Carneiro, 9-Mar-2013.)
𝐴 ∈ V       ( E “ {𝐴}) = 𝐴
 
Theoreminiseg 5954* An idiom that signifies an initial segment of an ordering, used, for example, in Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.)
(𝐵𝑉 → (𝐴 “ {𝐵}) = {𝑥𝑥𝐴𝐵})
 
Theoreminisegn0 5955 Nonemptiness of an initial segment in terms of range. (Contributed by Stefan O'Rear, 18-Jan-2015.)
(𝐴 ∈ ran 𝐹 ↔ (𝐹 “ {𝐴}) ≠ ∅)
 
Theoremdffr3 5956* Alternate definition of well-founded relation. Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 23-Apr-2004.) (Revised by Mario Carneiro, 23-Jun-2015.)
(𝑅 Fr 𝐴 ↔ ∀𝑥((𝑥𝐴𝑥 ≠ ∅) → ∃𝑦𝑥 (𝑥 ∩ (𝑅 “ {𝑦})) = ∅))
 
Theoremdfse2 5957* Alternate definition of set-like relation. (Contributed by Mario Carneiro, 23-Jun-2015.)
(𝑅 Se 𝐴 ↔ ∀𝑥𝐴 (𝐴 ∩ (𝑅 “ {𝑥})) ∈ V)
 
Theoremimass1 5958 Subset theorem for image. (Contributed by NM, 16-Mar-2004.)
(𝐴𝐵 → (𝐴𝐶) ⊆ (𝐵𝐶))
 
Theoremimass2 5959 Subset theorem for image. Exercise 22(a) of [Enderton] p. 53. (Contributed by NM, 22-Mar-1998.)
(𝐴𝐵 → (𝐶𝐴) ⊆ (𝐶𝐵))
 
Theoremndmima 5960 The image of a singleton outside the domain is empty. (Contributed by NM, 22-May-1998.) (Proof shortened by OpenAI, 3-Jul-2020.)
𝐴 ∈ dom 𝐵 → (𝐵 “ {𝐴}) = ∅)
 
Theoremrelcnv 5961 A converse is a relation. Theorem 12 of [Suppes] p. 62. (Contributed by NM, 29-Oct-1996.)
Rel 𝐴
 
Theoremrelbrcnvg 5962 When 𝑅 is a relation, the sethood assumptions on brcnv 5747 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
(Rel 𝑅 → (𝐴𝑅𝐵𝐵𝑅𝐴))
 
Theoremeliniseg2 5963 Eliminate the class existence constraint in eliniseg 5952. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.)
(Rel 𝐴 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
 
Theoremrelbrcnv 5964 When 𝑅 is a relation, the sethood assumptions on brcnv 5747 can be omitted. (Contributed by Mario Carneiro, 28-Apr-2015.)
Rel 𝑅       (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremcotrg 5965* Two ways of saying that the composition of two relations is included in a third relation. See its special instance cotr 5966 for the main application. (Contributed by NM, 27-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) Generalized from its special instance cotr 5966. (Revised by Richard Penner, 24-Dec-2019.)
((𝐴𝐵) ⊆ 𝐶 ↔ ∀𝑥𝑦𝑧((𝑥𝐵𝑦𝑦𝐴𝑧) → 𝑥𝐶𝑧))
 
Theoremcotr 5966* Two ways of saying a relation is transitive. Definition of transitivity in [Schechter] p. 51. Special instance of cotrg 5965. (Contributed by NM, 27-Dec-1996.)
((𝑅𝑅) ⊆ 𝑅 ↔ ∀𝑥𝑦𝑧((𝑥𝑅𝑦𝑦𝑅𝑧) → 𝑥𝑅𝑧))
 
TheoremidrefALT 5967* Alternate proof of idref 6901 not relying on definitions related to functions. Two ways to state that a relation is reflexive on a class. (Contributed by FL, 15-Jan-2012.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) (Revised by NM, 30-Mar-2016.) (Proof shortened by BJ, 28-Aug-2022.) The "proof modification is discouraged" tag is here only because this is an *ALT result. (Proof modification is discouraged.) (New usage is discouraged.)
(( I ↾ 𝐴) ⊆ 𝑅 ↔ ∀𝑥𝐴 𝑥𝑅𝑥)
 
Theoremcnvsym 5968* Two ways of saying a relation is symmetric. Similar to definition of symmetry in [Schechter] p. 51. (Contributed by NM, 28-Dec-1996.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝑅𝑅 ↔ ∀𝑥𝑦(𝑥𝑅𝑦𝑦𝑅𝑥))
 
Theoremintasym 5969* Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝑅𝑅) ⊆ I ↔ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦))
 
Theoremasymref 5970* Two ways of saying a relation is antisymmetric and reflexive. 𝑅 is the field of a relation by relfld 6120. (Contributed by NM, 6-May-2008.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝑅𝑅) = ( I ↾ 𝑅) ↔ ∀𝑥 𝑅𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) ↔ 𝑥 = 𝑦))
 
Theoremasymref2 5971* Two ways of saying a relation is antisymmetric and reflexive. (Contributed by NM, 6-May-2008.) (Proof shortened by Mario Carneiro, 4-Dec-2016.)
((𝑅𝑅) = ( I ↾ 𝑅) ↔ (∀𝑥 𝑅𝑥𝑅𝑥 ∧ ∀𝑥𝑦((𝑥𝑅𝑦𝑦𝑅𝑥) → 𝑥 = 𝑦)))
 
Theoremintirr 5972* Two ways of saying a relation is irreflexive. Definition of irreflexivity in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
((𝑅 ∩ I ) = ∅ ↔ ∀𝑥 ¬ 𝑥𝑅𝑥)
 
Theorembrcodir 5973* Two ways of saying that two elements have an upper bound. (Contributed by Mario Carneiro, 3-Nov-2015.)
((𝐴𝑉𝐵𝑊) → (𝐴(𝑅𝑅)𝐵 ↔ ∃𝑧(𝐴𝑅𝑧𝐵𝑅𝑧)))
 
Theoremcodir 5974* Two ways of saying a relation is directed. (Contributed by Mario Carneiro, 22-Nov-2013.)
((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵𝑧(𝑥𝑅𝑧𝑦𝑅𝑧))
 
Theoremqfto 5975* A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
((𝐴 × 𝐵) ⊆ (𝑅𝑅) ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝑅𝑦𝑦𝑅𝑥))
 
Theoremxpidtr 5976 A Cartesian square is a transitive relation. (Contributed by FL, 31-Jul-2009.)
((𝐴 × 𝐴) ∘ (𝐴 × 𝐴)) ⊆ (𝐴 × 𝐴)
 
Theoremtrin2 5977 The intersection of two transitive classes is transitive. (Contributed by FL, 31-Jul-2009.)
(((𝑅𝑅) ⊆ 𝑅 ∧ (𝑆𝑆) ⊆ 𝑆) → ((𝑅𝑆) ∘ (𝑅𝑆)) ⊆ (𝑅𝑆))
 
Theorempoirr2 5978 A partial order relation is irreflexive. (Contributed by Mario Carneiro, 2-Nov-2015.) (Proof shortened by Peter Mazsa, 2-Oct-2022.)
(𝑅 Po 𝐴 → (𝑅 ∩ ( I ↾ 𝐴)) = ∅)
 
Theoremtrinxp 5979 The relation induced by a transitive relation on a part of its field is transitive. (Taking the intersection of a relation with a Cartesian square is a way to restrict it to a subset of its field.) (Contributed by FL, 31-Jul-2009.)
((𝑅𝑅) ⊆ 𝑅 → ((𝑅 ∩ (𝐴 × 𝐴)) ∘ (𝑅 ∩ (𝐴 × 𝐴))) ⊆ (𝑅 ∩ (𝐴 × 𝐴)))
 
Theoremsoirri 5980 A strict order relation is irreflexive. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ 𝐴𝑅𝐴
 
Theoremsotri 5981 A strict order relation is a transitive relation. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑅𝐵𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremson2lpi 5982 A strict order relation has no 2-cycle loops. (Contributed by NM, 10-Feb-1996.) (Revised by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)        ¬ (𝐴𝑅𝐵𝐵𝑅𝐴)
 
Theoremsotri2 5983 A transitivity relation. (Read 𝐴𝐵 and 𝐵 < 𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐴𝑆 ∧ ¬ 𝐵𝑅𝐴𝐵𝑅𝐶) → 𝐴𝑅𝐶)
 
Theoremsotri3 5984 A transitivity relation. (Read 𝐴 < 𝐵 and 𝐵𝐶 implies 𝐴 < 𝐶.) (Contributed by Mario Carneiro, 10-May-2013.)
𝑅 Or 𝑆    &   𝑅 ⊆ (𝑆 × 𝑆)       ((𝐶𝑆𝐴𝑅𝐵 ∧ ¬ 𝐶𝑅𝐵) → 𝐴𝑅𝐶)
 
Theorempoleloe 5985 Express "less than or equals" for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
(𝐵𝑉 → (𝐴(𝑅 ∪ I )𝐵 ↔ (𝐴𝑅𝐵𝐴 = 𝐵)))
 
Theorempoltletr 5986 Transitive law for general strict orders. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Po 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → ((𝐴𝑅𝐵𝐵(𝑅 ∪ I )𝐶) → 𝐴𝑅𝐶))
 
Theoremsomin1 5987 Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐴)
 
Theoremsomincom 5988 Commutativity of minimum in a total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵) = if(𝐵𝑅𝐴, 𝐵, 𝐴))
 
Theoremsomin2 5989 Property of a minimum in a strict order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋)) → if(𝐴𝑅𝐵, 𝐴, 𝐵)(𝑅 ∪ I )𝐵)
 
Theoremsoltmin 5990 Being less than a minimum, for a general total order. (Contributed by Stefan O'Rear, 17-Jan-2015.)
((𝑅 Or 𝑋 ∧ (𝐴𝑋𝐵𝑋𝐶𝑋)) → (𝐴𝑅if(𝐵𝑅𝐶, 𝐵, 𝐶) ↔ (𝐴𝑅𝐵𝐴𝑅𝐶)))
 
Theoremcnvopab 5991* The converse of a class abstraction of ordered pairs. (Contributed by NM, 11-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
{⟨𝑥, 𝑦⟩ ∣ 𝜑} = {⟨𝑦, 𝑥⟩ ∣ 𝜑}
 
Theoremmptcnv 5992* The converse of a mapping function. (Contributed by Thierry Arnoux, 16-Jan-2017.)
(𝜑 → ((𝑥𝐴𝑦 = 𝐵) ↔ (𝑦𝐶𝑥 = 𝐷)))       (𝜑(𝑥𝐴𝐵) = (𝑦𝐶𝐷))
 
Theoremcnv0 5993 The converse of the empty set. (Contributed by NM, 6-Apr-1998.) Remove dependency on ax-sep 5195, ax-nul 5202, ax-pr 5321. (Revised by KP, 25-Oct-2021.)
∅ = ∅
 
Theoremcnvi 5994 The converse of the identity relation. Theorem 3.7(ii) of [Monk1] p. 36. (Contributed by NM, 26-Apr-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
I = I
 
Theoremcnvun 5995 The converse of a union is the union of converses. Theorem 16 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvdif 5996 Distributive law for converse over class difference. (Contributed by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremcnvin 5997 Distributive law for converse over intersection. Theorem 15 of [Suppes] p. 62. (Contributed by NM, 25-Mar-1998.) (Revised by Mario Carneiro, 26-Jun-2014.)
(𝐴𝐵) = (𝐴𝐵)
 
Theoremrnun 5998 Distributive law for range over union. Theorem 8 of [Suppes] p. 60. (Contributed by NM, 24-Mar-1998.)
ran (𝐴𝐵) = (ran 𝐴 ∪ ran 𝐵)
 
Theoremrnin 5999 The range of an intersection belongs the intersection of ranges. Theorem 9 of [Suppes] p. 60. (Contributed by NM, 15-Sep-2004.)
ran (𝐴𝐵) ⊆ (ran 𝐴 ∩ ran 𝐵)
 
Theoremrniun 6000 The range of an indexed union. (Contributed by Mario Carneiro, 29-May-2015.)
ran 𝑥𝐴 𝐵 = 𝑥𝐴 ran 𝐵
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >