HomeHome Metamath Proof Explorer
Theorem List (p. 64 of 425)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-26947)
  Hilbert Space Explorer  Hilbert Space Explorer
(26948-28472)
  Users' Mathboxes  Users' Mathboxes
(28473-42426)
 

Theorem List for Metamath Proof Explorer - 6301-6400   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremf1imapss 6301 Taking images under a one-to-one function preserves proper subsets. (Contributed by Stefan O'Rear, 30-Oct-2014.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶𝐴𝐷𝐴)) → ((𝐹𝐶) ⊊ (𝐹𝐷) ↔ 𝐶𝐷))
 
Theoremf1dom3fv3dif 6302 The function values for a 1-1 function from a set with three different elements are different. (Contributed by AV, 20-Mar-2019.)
(𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))    &   (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))    &   (𝜑𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅)       (𝜑 → ((𝐹𝐴) ≠ (𝐹𝐵) ∧ (𝐹𝐴) ≠ (𝐹𝐶) ∧ (𝐹𝐵) ≠ (𝐹𝐶)))
 
Theoremf1dom3el3dif 6303* The range of a 1-1 function from a set with three different elements has (at least) three different elements. (Contributed by AV, 20-Mar-2019.)
(𝜑 → (𝐴𝑋𝐵𝑌𝐶𝑍))    &   (𝜑 → (𝐴𝐵𝐴𝐶𝐵𝐶))    &   (𝜑𝐹:{𝐴, 𝐵, 𝐶}–1-1𝑅)       (𝜑 → ∃𝑥𝑅𝑦𝑅𝑧𝑅 (𝑥𝑦𝑥𝑧𝑦𝑧))
 
Theoremdff14a 6304* A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦 → (𝐹𝑥) ≠ (𝐹𝑦))))
 
Theoremdff14b 6305* A one-to-one function in terms of different function values for different arguments. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
(𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ∀𝑥𝐴𝑦 ∈ (𝐴 ∖ {𝑥})(𝐹𝑥) ≠ (𝐹𝑦)))
 
Theoremf12dfv 6306 A one-to-one function with a domain with at least two different elements in terms of function values. (Contributed by Alexander van der Vekens, 2-Mar-2018.)
𝐴 = {𝑋, 𝑌}       (((𝑋𝑈𝑌𝑉) ∧ 𝑋𝑌) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ (𝐹𝑋) ≠ (𝐹𝑌))))
 
Theoremf13dfv 6307 A one-to-one function with a domain with at least three different elements in terms of function values. (Contributed by Alexander van der Vekens, 26-Jan-2018.)
𝐴 = {𝑋, 𝑌, 𝑍}       (((𝑋𝑈𝑌𝑉𝑍𝑊) ∧ (𝑋𝑌𝑋𝑍𝑌𝑍)) → (𝐹:𝐴1-1𝐵 ↔ (𝐹:𝐴𝐵 ∧ ((𝐹𝑋) ≠ (𝐹𝑌) ∧ (𝐹𝑋) ≠ (𝐹𝑍) ∧ (𝐹𝑌) ≠ (𝐹𝑍)))))
 
Theoremdff1o6 6308* A one-to-one onto function in terms of function values. (Contributed by NM, 29-Mar-2008.)
(𝐹:𝐴1-1-onto𝐵 ↔ (𝐹 Fn 𝐴 ∧ ran 𝐹 = 𝐵 ∧ ∀𝑥𝐴𝑦𝐴 ((𝐹𝑥) = (𝐹𝑦) → 𝑥 = 𝑦)))
 
Theoremf1ocnvfv1 6309 The converse value of the value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → (𝐹‘(𝐹𝐶)) = 𝐶)
 
Theoremf1ocnvfv2 6310 The value of the converse value of a one-to-one onto function. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹‘(𝐹𝐶)) = 𝐶)
 
Theoremf1ocnvfv 6311 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by Raph Levien, 10-Apr-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴) → ((𝐹𝐶) = 𝐷 → (𝐹𝐷) = 𝐶))
 
Theoremf1ocnvfvb 6312 Relationship between the value of a one-to-one onto function and the value of its converse. (Contributed by NM, 20-May-2004.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → ((𝐹𝐶) = 𝐷 ↔ (𝐹𝐷) = 𝐶))
 
Theoremnvof1o 6313 An involution is a bijection. (Contributed by Thierry Arnoux, 7-Dec-2016.)
((𝐹 Fn 𝐴𝐹 = 𝐹) → 𝐹:𝐴1-1-onto𝐴)
 
Theoremnvocnv 6314* The converse of an involution is the function itself. (Contributed by Thierry Arnoux, 7-May-2019.)
((𝐹:𝐴𝐴 ∧ ∀𝑥𝐴 (𝐹‘(𝐹𝑥)) = 𝑥) → 𝐹 = 𝐹)
 
Theoremfsnex 6315* Relate a function with a singleton as domain and one variable. (Contributed by Thierry Arnoux, 12-Jul-2020.)
(𝑥 = (𝑓𝐴) → (𝜓𝜑))       (𝐴𝑉 → (∃𝑓(𝑓:{𝐴}⟶𝐷𝜑) ↔ ∃𝑥𝐷 𝜓))
 
Theoremf1prex 6316* Relate a one-to-one function with a pair as domain and two different variables. (Contributed by Thierry Arnoux, 12-Jul-2020.)
(𝑥 = (𝑓𝐴) → (𝜓𝜒))    &   (𝑦 = (𝑓𝐵) → (𝜒𝜑))       ((𝐴𝑉𝐵𝑊𝐴𝐵) → (∃𝑓(𝑓:{𝐴, 𝐵}–1-1𝐷𝜑) ↔ ∃𝑥𝐷𝑦𝐷 (𝑥𝑦𝜓)))
 
Theoremf1ocnvdm 6317 The value of the converse of a one-to-one onto function belongs to its domain. (Contributed by NM, 26-May-2006.)
((𝐹:𝐴1-1-onto𝐵𝐶𝐵) → (𝐹𝐶) ∈ 𝐴)
 
Theoremf1ocnvfvrneq 6318 If the values of a one-to-one function for two arguments from the range of the function are equal, the arguments themselves must be equal. (Contributed by Alexander van der Vekens, 12-Nov-2017.)
((𝐹:𝐴1-1𝐵 ∧ (𝐶 ∈ ran 𝐹𝐷 ∈ ran 𝐹)) → ((𝐹𝐶) = (𝐹𝐷) → 𝐶 = 𝐷))
 
Theoremfcof1 6319 An application is injective if a retraction exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 11-Nov-2011.) (Revised by Mario Carneiro, 27-Dec-2014.)
((𝐹:𝐴𝐵 ∧ (𝑅𝐹) = ( I ↾ 𝐴)) → 𝐹:𝐴1-1𝐵)
 
Theoremfcofo 6320 An application is surjective if a section exists. Proposition 8 of [BourbakiEns] p. E.II.18. (Contributed by FL, 17-Nov-2011.) (Proof shortened by Mario Carneiro, 27-Dec-2014.)
((𝐹:𝐴𝐵𝑆:𝐵𝐴 ∧ (𝐹𝑆) = ( I ↾ 𝐵)) → 𝐹:𝐴onto𝐵)
 
Theoremcbvfo 6321* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
((𝐹𝑥) = 𝑦 → (𝜑𝜓))       (𝐹:𝐴onto𝐵 → (∀𝑥𝐴 𝜑 ↔ ∀𝑦𝐵 𝜓))
 
Theoremcbvexfo 6322* Change bound variable between domain and range of function. (Contributed by NM, 23-Feb-1997.)
((𝐹𝑥) = 𝑦 → (𝜑𝜓))       (𝐹:𝐴onto𝐵 → (∃𝑥𝐴 𝜑 ↔ ∃𝑦𝐵 𝜓))
 
Theoremcocan1 6323 An injection is left-cancelable. (Contributed by FL, 2-Aug-2009.) (Revised by Mario Carneiro, 21-Mar-2015.)
((𝐹:𝐵1-1𝐶𝐻:𝐴𝐵𝐾:𝐴𝐵) → ((𝐹𝐻) = (𝐹𝐾) ↔ 𝐻 = 𝐾))
 
Theoremcocan2 6324 A surjection is right-cancelable. (Contributed by FL, 21-Nov-2011.) (Proof shortened by Mario Carneiro, 21-Mar-2015.)
((𝐹:𝐴onto𝐵𝐻 Fn 𝐵𝐾 Fn 𝐵) → ((𝐻𝐹) = (𝐾𝐹) ↔ 𝐻 = 𝐾))
 
Theoremfcof1oinvd 6325 Show that a function is the inverse of a bijective function if their composition is the identity function. Formerly part of proof of fcof1o 6328. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
(𝜑𝐹:𝐴1-1-onto𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))       (𝜑𝐹 = 𝐺)
 
Theoremfcof1od 6326 A function is bijective if a "retraction" and a "section" exist, see comments for fcof1 6319 and fcofo 6320. Formerly part of proof of fcof1o 6328. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))    &   (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theorem2fcoidinvd 6327 Show that a function is the inverse of a function if their compositions are the identity functions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Revised by AV, 15-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))    &   (𝜑 → (𝐹𝐺) = ( I ↾ 𝐵))       (𝜑𝐹 = 𝐺)
 
Theoremfcof1o 6328 Show that two functions are inverse to each other by computing their compositions. (Contributed by Mario Carneiro, 21-Mar-2015.) (Proof shortened by AV, 15-Dec-2019.)
(((𝐹:𝐴𝐵𝐺:𝐵𝐴) ∧ ((𝐹𝐺) = ( I ↾ 𝐵) ∧ (𝐺𝐹) = ( I ↾ 𝐴))) → (𝐹:𝐴1-1-onto𝐵𝐹 = 𝐺))
 
Theorem2fvcoidd 6329* Show that the composition of two functions is the identity function by applying both functions to each value of the domain of the first function. (Contributed by AV, 15-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)       (𝜑 → (𝐺𝐹) = ( I ↾ 𝐴))
 
Theorem2fvidf1od 6330* A function is bijective if it has an inverse function. (Contributed by AV, 15-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)    &   (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)       (𝜑𝐹:𝐴1-1-onto𝐵)
 
Theorem2fvidinvd 6331* Show that two functions are inverse to each other by applying them twice to each value of their domains. (Contributed by AV, 13-Dec-2019.)
(𝜑𝐹:𝐴𝐵)    &   (𝜑𝐺:𝐵𝐴)    &   (𝜑 → ∀𝑎𝐴 (𝐺‘(𝐹𝑎)) = 𝑎)    &   (𝜑 → ∀𝑏𝐵 (𝐹‘(𝐺𝑏)) = 𝑏)       (𝜑𝐹 = 𝐺)
 
Theoremfoeqcnvco 6332 Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
((𝐹:𝐴onto𝐵𝐺:𝐴onto𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐵)))
 
Theoremf1eqcocnv 6333 Condition for function equality in terms of vanishing of the composition with the inverse. (Contributed by Stefan O'Rear, 12-Feb-2015.)
((𝐹:𝐴1-1𝐵𝐺:𝐴1-1𝐵) → (𝐹 = 𝐺 ↔ (𝐹𝐺) = ( I ↾ 𝐴)))
 
Theoremfveqf1o 6334 Given a bijection 𝐹, produce another bijection 𝐺 which additionally maps two specified points. (Contributed by Mario Carneiro, 30-May-2015.)
𝐺 = (𝐹 ∘ (( I ↾ (𝐴 ∖ {𝐶, (𝐹𝐷)})) ∪ {⟨𝐶, (𝐹𝐷)⟩, ⟨(𝐹𝐷), 𝐶⟩}))       ((𝐹:𝐴1-1-onto𝐵𝐶𝐴𝐷𝐵) → (𝐺:𝐴1-1-onto𝐵 ∧ (𝐺𝐶) = 𝐷))
 
Theoremfliftrel 6335* 𝐹, a function lift, is a subset of 𝑅 × 𝑆. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑𝐹 ⊆ (𝑅 × 𝑆))
 
Theoremfliftel 6336* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (𝐶𝐹𝐷 ↔ ∃𝑥𝑋 (𝐶 = 𝐴𝐷 = 𝐵)))
 
Theoremfliftel1 6337* Elementhood in the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       ((𝜑𝑥𝑋) → 𝐴𝐹𝐵)
 
Theoremfliftcnv 6338* Converse of the relation 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑𝐹 = ran (𝑥𝑋 ↦ ⟨𝐵, 𝐴⟩))
 
Theoremfliftfun 6339* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑦𝐴 = 𝐶)    &   (𝑥 = 𝑦𝐵 = 𝐷)       (𝜑 → (Fun 𝐹 ↔ ∀𝑥𝑋𝑦𝑋 (𝐴 = 𝐶𝐵 = 𝐷)))
 
Theoremfliftfund 6340* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑦𝐴 = 𝐶)    &   (𝑥 = 𝑦𝐵 = 𝐷)    &   ((𝜑 ∧ (𝑥𝑋𝑦𝑋𝐴 = 𝐶)) → 𝐵 = 𝐷)       (𝜑 → Fun 𝐹)
 
Theoremfliftfuns 6341* The function 𝐹 is the unique function defined by 𝐹𝐴 = 𝐵, provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (Fun 𝐹 ↔ ∀𝑦𝑋𝑧𝑋 (𝑦 / 𝑥𝐴 = 𝑧 / 𝑥𝐴𝑦 / 𝑥𝐵 = 𝑧 / 𝑥𝐵)))
 
Theoremfliftf 6342* The domain and range of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)       (𝜑 → (Fun 𝐹𝐹:ran (𝑥𝑋𝐴)⟶𝑆))
 
Theoremfliftval 6343* The value of the function 𝐹. (Contributed by Mario Carneiro, 23-Dec-2016.)
𝐹 = ran (𝑥𝑋 ↦ ⟨𝐴, 𝐵⟩)    &   ((𝜑𝑥𝑋) → 𝐴𝑅)    &   ((𝜑𝑥𝑋) → 𝐵𝑆)    &   (𝑥 = 𝑌𝐴 = 𝐶)    &   (𝑥 = 𝑌𝐵 = 𝐷)    &   (𝜑 → Fun 𝐹)       ((𝜑𝑌𝑋) → (𝐹𝐶) = 𝐷)
 
Theoremisoeq1 6344 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐻 = 𝐺 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵)))
 
Theoremisoeq2 6345 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝑅 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑇, 𝑆 (𝐴, 𝐵)))
 
Theoremisoeq3 6346 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝑆 = 𝑇 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑇 (𝐴, 𝐵)))
 
Theoremisoeq4 6347 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐴 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐶, 𝐵)))
 
Theoremisoeq5 6348 Equality theorem for isomorphisms. (Contributed by NM, 17-May-2004.)
(𝐵 = 𝐶 → (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐶)))
 
Theoremnfiso 6349 Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑥𝐻    &   𝑥𝑅    &   𝑥𝑆    &   𝑥𝐴    &   𝑥𝐵       𝑥 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵)
 
Theoremisof1o 6350 An isomorphism is a one-to-one onto function. (Contributed by NM, 27-Apr-2004.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻:𝐴1-1-onto𝐵)
 
Theoremisof1oidb 6351 A function is a bijection iff it is an isomorphism regarding the identity relation. (Contributed by AV, 9-May-2021.)
(𝐻:𝐴1-1-onto𝐵𝐻 Isom I , I (𝐴, 𝐵))
 
Theoremisof1oopb 6352 A function is a bijection iff it is an isomorphism regarding the universal class of ordered pairs as relations. (Contributed by AV, 9-May-2021.)
(𝐻:𝐴1-1-onto𝐵𝐻 Isom (V × V), (V × V)(𝐴, 𝐵))
 
Theoremisorel 6353 An isomorphism connects binary relations via its function values. (Contributed by NM, 27-Apr-2004.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → (𝐶𝑅𝐷 ↔ (𝐻𝐶)𝑆(𝐻𝐷)))
 
Theoremsoisores 6354* Express the condition of isomorphism on two strict orders for a function's restriction. (Contributed by Mario Carneiro, 22-Jan-2015.)
(((𝑅 Or 𝐵𝑆 Or 𝐶) ∧ (𝐹:𝐵𝐶𝐴𝐵)) → ((𝐹𝐴) Isom 𝑅, 𝑆 (𝐴, (𝐹𝐴)) ↔ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐹𝑥)𝑆(𝐹𝑦))))
 
Theoremsoisoi 6355* Infer isomorphism from one direction of an order proof for isomorphisms between strict orders. (Contributed by Stefan O'Rear, 2-Nov-2014.)
(((𝑅 Or 𝐴𝑆 Po 𝐵) ∧ (𝐻:𝐴onto𝐵 ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑅𝑦 → (𝐻𝑥)𝑆(𝐻𝑦)))) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 
Theoremisoid 6356 Identity law for isomorphism. Proposition 6.30(1) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
( I ↾ 𝐴) Isom 𝑅, 𝑅 (𝐴, 𝐴)
 
Theoremisocnv 6357 Converse law for isomorphism. Proposition 6.30(2) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → 𝐻 Isom 𝑆, 𝑅 (𝐵, 𝐴))
 
Theoremisocnv2 6358 Converse law for isomorphism. (Contributed by Mario Carneiro, 30-Jan-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, 𝑆(𝐴, 𝐵))
 
Theoremisocnv3 6359 Complementation law for isomorphism. (Contributed by Mario Carneiro, 9-Sep-2015.)
𝐶 = ((𝐴 × 𝐴) ∖ 𝑅)    &   𝐷 = ((𝐵 × 𝐵) ∖ 𝑆)       (𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝐶, 𝐷 (𝐴, 𝐵))
 
Theoremisores2 6360 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom 𝑅, (𝑆 ∩ (𝐵 × 𝐵))(𝐴, 𝐵))
 
Theoremisores1 6361 An isomorphism from one well-order to another can be restricted on either well-order. (Contributed by Mario Carneiro, 15-Jan-2013.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ↔ 𝐻 Isom (𝑅 ∩ (𝐴 × 𝐴)), 𝑆(𝐴, 𝐵))
 
Theoremisores3 6362 Induced isomorphism on a subset. (Contributed by Stefan O'Rear, 5-Nov-2014.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐾𝐴𝑋 = (𝐻𝐾)) → (𝐻𝐾) Isom 𝑅, 𝑆 (𝐾, 𝑋))
 
Theoremisotr 6363 Composition (transitive) law for isomorphism. Proposition 6.30(3) of [TakeutiZaring] p. 33. (Contributed by NM, 27-Apr-2004.) (Proof shortened by Mario Carneiro, 5-Dec-2016.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑆, 𝑇 (𝐵, 𝐶)) → (𝐺𝐻) Isom 𝑅, 𝑇 (𝐴, 𝐶))
 
Theoremisomin 6364 Isomorphisms preserve minimal elements. Note that (𝑅 “ {𝐷}) is Takeuti and Zaring's idiom for the initial segment {𝑥𝑥𝑅𝐷}. Proposition 6.31(1) of [TakeutiZaring] p. 33. (Contributed by NM, 19-Apr-2004.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ (𝐶𝐴𝐷𝐴)) → ((𝐶 ∩ (𝑅 “ {𝐷})) = ∅ ↔ ((𝐻𝐶) ∩ (𝑆 “ {(𝐻𝐷)})) = ∅))
 
Theoremisoini 6365 Isomorphisms preserve initial segments. Proposition 6.31(2) of [TakeutiZaring] p. 33. (Contributed by NM, 20-Apr-2004.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐷𝐴) → (𝐻 “ (𝐴 ∩ (𝑅 “ {𝐷}))) = (𝐵 ∩ (𝑆 “ {(𝐻𝐷)})))
 
Theoremisoini2 6366 Isomorphisms are isomorphisms on their initial segments. (Contributed by Mario Carneiro, 29-Mar-2014.)
𝐶 = (𝐴 ∩ (𝑅 “ {𝑋}))    &   𝐷 = (𝐵 ∩ (𝑆 “ {(𝐻𝑋)}))       ((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝑋𝐴) → (𝐻𝐶) Isom 𝑅, 𝑆 (𝐶, 𝐷))
 
Theoremisofrlem 6367* Lemma for isofr 6369. (Contributed by NM, 29-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
(𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑 → (𝐻𝑥) ∈ V)       (𝜑 → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
Theoremisoselem 6368* Lemma for isose 6370. (Contributed by Mario Carneiro, 23-Jun-2015.)
(𝜑𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))    &   (𝜑 → (𝐻𝑥) ∈ V)       (𝜑 → (𝑅 Se 𝐴𝑆 Se 𝐵))
 
Theoremisofr 6369 An isomorphism preserves well-foundedness. Proposition 6.32(1) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Fr 𝐴𝑆 Fr 𝐵))
 
Theoremisose 6370 An isomorphism preserves set-like relations. (Contributed by Mario Carneiro, 23-Jun-2015.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Se 𝐴𝑆 Se 𝐵))
 
Theoremisofr2 6371 A weak form of isofr 6369 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐵𝑉) → (𝑆 Fr 𝐵𝑅 Fr 𝐴))
 
Theoremisopolem 6372 Lemma for isopo 6373. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Po 𝐵𝑅 Po 𝐴))
 
Theoremisopo 6373 An isomorphism preserves partial ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Po 𝐴𝑆 Po 𝐵))
 
Theoremisosolem 6374 Lemma for isoso 6375. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑆 Or 𝐵𝑅 Or 𝐴))
 
Theoremisoso 6375 An isomorphism preserves strict ordering. (Contributed by Stefan O'Rear, 16-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 Or 𝐴𝑆 Or 𝐵))
 
Theoremisowe 6376 An isomorphism preserves well-ordering. Proposition 6.32(3) of [TakeutiZaring] p. 33. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 18-Nov-2014.)
(𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) → (𝑅 We 𝐴𝑆 We 𝐵))
 
Theoremisowe2 6377* A weak form of isowe 6376 that does not need Replacement. (Contributed by Mario Carneiro, 18-Nov-2014.)
((𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ ∀𝑥(𝐻𝑥) ∈ V) → (𝑆 We 𝐵𝑅 We 𝐴))
 
Theoremf1oiso 6378* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. Proposition 6.33 of [TakeutiZaring] p. 34. (Contributed by NM, 30-Apr-2004.)
((𝐻:𝐴1-1-onto𝐵𝑆 = {⟨𝑧, 𝑤⟩ ∣ ∃𝑥𝐴𝑦𝐴 ((𝑧 = (𝐻𝑥) ∧ 𝑤 = (𝐻𝑦)) ∧ 𝑥𝑅𝑦)}) → 𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 
Theoremf1oiso2 6379* Any one-to-one onto function determines an isomorphism with an induced relation 𝑆. (Contributed by Mario Carneiro, 9-Mar-2013.)
𝑆 = {⟨𝑥, 𝑦⟩ ∣ ((𝑥𝐵𝑦𝐵) ∧ (𝐻𝑥)𝑅(𝐻𝑦))}       (𝐻:𝐴1-1-onto𝐵𝐻 Isom 𝑅, 𝑆 (𝐴, 𝐵))
 
Theoremf1owe 6380* Well-ordering of isomorphic relations. (Contributed by NM, 4-Mar-1997.)
𝑅 = {⟨𝑥, 𝑦⟩ ∣ (𝐹𝑥)𝑆(𝐹𝑦)}       (𝐹:𝐴1-1-onto𝐵 → (𝑆 We 𝐵𝑅 We 𝐴))
 
Theoremweniso 6381 A set-like well-ordering has no nontrivial automorphisms. (Contributed by Stefan O'Rear, 16-Nov-2014.) (Revised by Mario Carneiro, 25-Jun-2015.)
((𝑅 We 𝐴𝑅 Se 𝐴𝐹 Isom 𝑅, 𝑅 (𝐴, 𝐴)) → 𝐹 = ( I ↾ 𝐴))
 
Theoremweisoeq 6382 Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso 6919. (Contributed by Mario Carneiro, 25-Jun-2015.)
(((𝑅 We 𝐴𝑅 Se 𝐴) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
 
Theoremweisoeq2 6383 Thus, there is at most one isomorphism between any two set-like well-ordered classes. Class version of wemoiso2 6920. (Contributed by Mario Carneiro, 25-Jun-2015.)
(((𝑆 We 𝐵𝑆 Se 𝐵) ∧ (𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵) ∧ 𝐺 Isom 𝑅, 𝑆 (𝐴, 𝐵))) → 𝐹 = 𝐺)
 
Theoremknatar 6384* The Knaster-Tarski theorem says that every monotone function over a complete lattice has a (least) fixpoint. Here we specialize this theorem to the case when the lattice is the powerset lattice 𝒫 𝐴. (Contributed by Mario Carneiro, 11-Jun-2015.)
𝑋 = {𝑧 ∈ 𝒫 𝐴 ∣ (𝐹𝑧) ⊆ 𝑧}       ((𝐴𝑉 ∧ (𝐹𝐴) ⊆ 𝐴 ∧ ∀𝑥 ∈ 𝒫 𝐴𝑦 ∈ 𝒫 𝑥(𝐹𝑦) ⊆ (𝐹𝑥)) → (𝑋𝐴 ∧ (𝐹𝑋) = 𝑋))
 
2.3.15  Cantor's Theorem
 
Theoremcanth 6385 No set 𝐴 is equinumerous to its power set (Cantor's theorem), i.e. no function can map 𝐴 it onto its power set. Compare Theorem 6B(b) of [Enderton] p. 132. For the equinumerosity version, see canth2 7874. Note that 𝐴 must be a set: this theorem does not hold when 𝐴 is too large to be a set; see ncanth 6386 for a counterexample. (Use nex 1709 if you want the form ¬ ∃𝑓𝑓:𝐴onto→𝒫 𝐴.) (Contributed by NM, 7-Aug-1994.) (Proof shortened by Mario Carneiro, 7-Jun-2016.)
𝐴 ∈ V        ¬ 𝐹:𝐴onto→𝒫 𝐴
 
Theoremncanth 6386 Cantor's theorem fails for the universal class (which is not a set but a proper class by vprc 4623). Specifically, the identity function maps the universe onto its power class. Compare canth 6385 that works for sets. See also the remark in ru 3305 about NF, in which Cantor's theorem fails for sets that are "too large." This theorem gives some intuition behind that failure: in NF the universal class is a set, and it equals its own power set. (Contributed by NM, 29-Jun-2004.)
I :V–onto→𝒫 V
 
2.3.16  Restricted iota (description binder)
 
Syntaxcrio 6387 Extend class notation with restricted description binder.
class (𝑥𝐴 𝜑)
 
Definitiondf-riota 6388 Define restricted description binder. In case there is no unique 𝑥 such that (𝑥𝐴𝜑) holds, it evaluates to the empty set. See also comments for df-iota 5653. (Contributed by NM, 15-Sep-2011.) (Revised by Mario Carneiro, 15-Oct-2016.) (Revised by NM, 2-Sep-2018.)
(𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
 
Theoremriotaeqdv 6389* Formula-building deduction rule for iota. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜓))
 
Theoremriotabidv 6390* Formula-building deduction rule for restricted iota. (Contributed by NM, 15-Sep-2011.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐴 𝜒))
 
Theoremriotaeqbidv 6391* Equality deduction for restricted universal quantifier. (Contributed by NM, 15-Sep-2011.)
(𝜑𝐴 = 𝐵)    &   (𝜑 → (𝜓𝜒))       (𝜑 → (𝑥𝐴 𝜓) = (𝑥𝐵 𝜒))
 
Theoremriotaex 6392 Restricted iota is a set. (Contributed by NM, 15-Sep-2011.)
(𝑥𝐴 𝜓) ∈ V
 
Theoremriotav 6393 An iota restricted to the universe is unrestricted. (Contributed by NM, 18-Sep-2011.)
(𝑥 ∈ V 𝜑) = (℩𝑥𝜑)
 
Theoremriotauni 6394 Restricted iota in terms of class union. (Contributed by NM, 11-Oct-2011.)
(∃!𝑥𝐴 𝜑 → (𝑥𝐴 𝜑) = {𝑥𝐴𝜑})
 
Theoremnfriota1 6395* The abstraction variable in a restricted iota descriptor isn't free. (Contributed by NM, 12-Oct-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥(𝑥𝐴 𝜑)
 
Theoremnfriotad 6396 Deduction version of nfriota 6397. (Contributed by NM, 18-Feb-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   (𝜑 → Ⅎ𝑥𝜓)    &   (𝜑𝑥𝐴)       (𝜑𝑥(𝑦𝐴 𝜓))
 
Theoremnfriota 6397* A variable not free in a wff remains so in a restricted iota descriptor. (Contributed by NM, 12-Oct-2011.)
𝑥𝜑    &   𝑥𝐴       𝑥(𝑦𝐴 𝜑)
 
Theoremcbvriota 6398* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑦𝜑    &   𝑥𝜓    &   (𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcbvriotav 6399* Change bound variable in a restricted description binder. (Contributed by NM, 18-Mar-2013.) (Revised by Mario Carneiro, 15-Oct-2016.)
(𝑥 = 𝑦 → (𝜑𝜓))       (𝑥𝐴 𝜑) = (𝑦𝐴 𝜓)
 
Theoremcsbriota 6400* Interchange class substitution and restricted description binder. (Contributed by NM, 24-Feb-2013.) (Revised by NM, 2-Sep-2018.)
𝐴 / 𝑥(𝑦𝐵 𝜑) = (𝑦𝐵 [𝐴 / 𝑥]𝜑)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42426
  Copyright terms: Public domain < Previous  Next >