Home Metamath Proof ExplorerTheorem List (p. 7 of 425) < Previous  Next > Bad symbols? Try the GIF version. Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

 Color key: Metamath Proof Explorer (1-26977) Hilbert Space Explorer (26978-28502) Users' Mathboxes (28503-42428)

Theorem List for Metamath Proof Explorer - 601-700   *Has distinct variable group(s)
TypeLabelDescription
Statement

Theoremnan 601 Theorem to move a conjunct in and out of a negation. (Contributed by NM, 9-Nov-2003.)
((𝜑 → ¬ (𝜓𝜒)) ↔ ((𝜑𝜓) → ¬ 𝜒))

Theorempm4.15 602 Theorem *4.15 of [WhiteheadRussell] p. 117. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 18-Nov-2012.)
(((𝜑𝜓) → ¬ 𝜒) ↔ ((𝜓𝜒) → ¬ 𝜑))

Theorempm4.78 603 Implication distributes over disjunction. Theorem *4.78 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 19-Nov-2012.)
(((𝜑𝜓) ∨ (𝜑𝜒)) ↔ (𝜑 → (𝜓𝜒)))

Theorempm4.79 604 Theorem *4.79 of [WhiteheadRussell] p. 121. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Wolf Lammen, 27-Jun-2013.)
(((𝜓𝜑) ∨ (𝜒𝜑)) ↔ ((𝜓𝜒) → 𝜑))

Theorempm4.87 605 Theorem *4.87 of [WhiteheadRussell] p. 122. (Contributed by NM, 3-Jan-2005.) (Proof shortened by Eric Schmidt, 26-Oct-2006.)
(((((𝜑𝜓) → 𝜒) ↔ (𝜑 → (𝜓𝜒))) ∧ ((𝜑 → (𝜓𝜒)) ↔ (𝜓 → (𝜑𝜒)))) ∧ ((𝜓 → (𝜑𝜒)) ↔ ((𝜓𝜑) → 𝜒)))

Theorempm3.33 606 Theorem *3.33 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
(((𝜑𝜓) ∧ (𝜓𝜒)) → (𝜑𝜒))

Theorempm3.34 607 Theorem *3.34 (Syll) of [WhiteheadRussell] p. 112. (Contributed by NM, 3-Jan-2005.)
(((𝜓𝜒) ∧ (𝜑𝜓)) → (𝜑𝜒))

Theorempm3.35 608 Conjunctive detachment. Theorem *3.35 of [WhiteheadRussell] p. 112. (Contributed by NM, 14-Dec-2002.)
((𝜑 ∧ (𝜑𝜓)) → 𝜓)

Theorempm5.31 609 Theorem *5.31 of [WhiteheadRussell] p. 125. (Contributed by NM, 3-Jan-2005.)
((𝜒 ∧ (𝜑𝜓)) → (𝜑 → (𝜓𝜒)))

Theoremimp4b 610 An importation inference. (Contributed by NM, 26-Apr-1994.) Shorten imp4a 611. (Revised by Wolf Lammen, 19-Jul-2021.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Theoremimp4a 611 An importation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 19-Jul-2021.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))

Theoremimp4aOLD 612 Obsolete proof of imp4a 611 as of 19-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))

Theoremimp4bOLD 613 Obsolete proof of imp4b 610 as of 19-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       ((𝜑𝜓) → ((𝜒𝜃) → 𝜏))

Theoremimp4c 614 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))

Theoremimp4d 615 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (𝜑 → ((𝜓 ∧ (𝜒𝜃)) → 𝜏))

Theoremimp41 616 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       ((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)

Theoremimp42 617 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)

Theoremimp43 618 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       (((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)

Theoremimp44 619 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       ((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)

Theoremimp45 620 An importation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))       ((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)

Theoremimp5a 621 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (𝜑 → (𝜓 → (𝜒 → ((𝜃𝜏) → 𝜂))))

Theoremimp5d 622 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (((𝜑𝜓) ∧ 𝜒) → ((𝜃𝜏) → 𝜂))

Theoremimp5g 623 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       ((𝜑𝜓) → (((𝜒𝜃) ∧ 𝜏) → 𝜂))

Theoremimp55 624 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       (((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) ∧ 𝜏) → 𝜂)

Theoremimp511 625 An importation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))       ((𝜑 ∧ ((𝜓 ∧ (𝜒𝜃)) ∧ 𝜏)) → 𝜂)

Theoremexpimpd 626 Exportation followed by a deduction version of importation. (Contributed by NM, 6-Sep-2008.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) → 𝜃))

Theoremexp31 627 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (𝜑 → (𝜓 → (𝜒𝜃)))

Theoremexp32 628 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       (𝜑 → (𝜓 → (𝜒𝜃)))

Theoremexp4b 629 An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) Shorten exp4a 630. (Revised by Wolf Lammen, 20-Jul-2021.)
((𝜑𝜓) → ((𝜒𝜃) → 𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp4a 630 An exportation inference. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 20-Jul-2021.)
(𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp4aOLD 631 Obsolete proof of exp4a 630 as of 20-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
(𝜑 → (𝜓 → ((𝜒𝜃) → 𝜏)))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp4bOLD 632 Obsolete proof of exp4b 629 as of 20-Jul-2021. (Contributed by NM, 26-Apr-1994.) (Proof shortened by Wolf Lammen, 23-Nov-2012.) (Proof modification is discouraged.) (New usage is discouraged.)
((𝜑𝜓) → ((𝜒𝜃) → 𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp4c 633 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → (((𝜓𝜒) ∧ 𝜃) → 𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp4d 634 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(𝜑 → ((𝜓 ∧ (𝜒𝜃)) → 𝜏))       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp41 635 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((((𝜑𝜓) ∧ 𝜒) ∧ 𝜃) → 𝜏)       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp42 636 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((𝜑 ∧ (𝜓𝜒)) ∧ 𝜃) → 𝜏)       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp43 637 An exportation inference. (Contributed by NM, 26-Apr-1994.)
(((𝜑𝜓) ∧ (𝜒𝜃)) → 𝜏)       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp44 638 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((𝜑 ∧ ((𝜓𝜒) ∧ 𝜃)) → 𝜏)       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexp45 639 An exportation inference. (Contributed by NM, 26-Apr-1994.)
((𝜑 ∧ (𝜓 ∧ (𝜒𝜃))) → 𝜏)       (𝜑 → (𝜓 → (𝜒 → (𝜃𝜏))))

Theoremexpr 640 Export a wff from a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       ((𝜑𝜓) → (𝜒𝜃))

Theoremexp5c 641 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → ((𝜓𝜒) → ((𝜃𝜏) → 𝜂)))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Theoremexp5j 642 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → ((((𝜓𝜒) ∧ 𝜃) ∧ 𝜏) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Theoremexp5l 643 An exportation inference. (Contributed by Jeff Hankins, 7-Jul-2009.)
(𝜑 → (((𝜓𝜒) ∧ (𝜃𝜏)) → 𝜂))       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Theoremexp53 644 An exportation inference. (Contributed by Jeff Hankins, 30-Aug-2009.)
((((𝜑𝜓) ∧ (𝜒𝜃)) ∧ 𝜏) → 𝜂)       (𝜑 → (𝜓 → (𝜒 → (𝜃 → (𝜏𝜂)))))

Theoremexpl 645 Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       (𝜑 → ((𝜓𝜒) → 𝜃))

Theoremimpr 646 Import a wff into a right conjunct. (Contributed by Jeff Hankins, 30-Aug-2009.)
((𝜑𝜓) → (𝜒𝜃))       ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Theoremimpl 647 Export a wff from a left conjunct. (Contributed by Mario Carneiro, 9-Jul-2014.)
(𝜑 → ((𝜓𝜒) → 𝜃))       (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Theoremimpac 648 Importation with conjunction in consequent. (Contributed by NM, 9-Aug-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) → (𝜒𝜓))

Theoremexbiri 649 Inference form of exbir 37598. This proof is exbiriVD 38004 automatically translated and minimized. (Contributed by Alan Sare, 31-Dec-2011.) (Proof shortened by Wolf Lammen, 27-Jan-2013.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → (𝜓 → (𝜃𝜒)))

Theoremsimprbda 650 Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓) → 𝜒)

Theoremsimplbda 651 Deduction eliminating a conjunct. (Contributed by NM, 22-Oct-2007.)
(𝜑 → (𝜓 ↔ (𝜒𝜃)))       ((𝜑𝜓) → 𝜃)

Theoremsimplbi2 652 Deduction eliminating a conjunct. (Contributed by Alan Sare, 31-Dec-2011.)
(𝜑 ↔ (𝜓𝜒))       (𝜓 → (𝜒𝜑))

Theoremsimplbi2comt 653 Closed form of simplbi2com 654. (Contributed by Alan Sare, 22-Jul-2012.)
((𝜑 ↔ (𝜓𝜒)) → (𝜒 → (𝜓𝜑)))

Theoremsimplbi2com 654 A deduction eliminating a conjunct, similar to simplbi2 652. (Contributed by Alan Sare, 22-Jul-2012.) (Proof shortened by Wolf Lammen, 10-Nov-2012.)
(𝜑 ↔ (𝜓𝜒))       (𝜒 → (𝜓𝜑))

Theoremsimpl2im 655 Implication from an eliminated conjunct implied by the antecedent. (Contributed by BJ/AV, 5-Apr-2021.)
(𝜑 → (𝜓𝜒))    &   (𝜒𝜃)       (𝜑𝜃)

Theoremsimplbiim 656 Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.)
(𝜑 ↔ (𝜓𝜒))    &   (𝜒𝜃)       (𝜑𝜃)

Theoremdfbi2 657 A theorem similar to the standard definition of the biconditional. Definition of [Margaris] p. 49. (Contributed by NM, 24-Jan-1993.)
((𝜑𝜓) ↔ ((𝜑𝜓) ∧ (𝜓𝜑)))

Theoremdfbi 658 Definition df-bi 195 rewritten in an abbreviated form to help intuitive understanding of that definition. Note that it is a conjunction of two implications; one which asserts properties that follow from the biconditional and one which asserts properties that imply the biconditional. (Contributed by NM, 15-Aug-2008.)
(((𝜑𝜓) → ((𝜑𝜓) ∧ (𝜓𝜑))) ∧ (((𝜑𝜓) ∧ (𝜓𝜑)) → (𝜑𝜓)))

Theorempm4.71 659 Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 2-Dec-2012.)
((𝜑𝜓) ↔ (𝜑 ↔ (𝜑𝜓)))

Theorempm4.71r 660 Implication in terms of biconditional and conjunction. Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 25-Jul-1999.)
((𝜑𝜓) ↔ (𝜑 ↔ (𝜓𝜑)))

Theorempm4.71i 661 Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 4-Jan-2004.)
(𝜑𝜓)       (𝜑 ↔ (𝜑𝜓))

Theorempm4.71ri 662 Inference converting an implication to a biconditional with conjunction. Inference from Theorem *4.71 of [WhiteheadRussell] p. 120 (with conjunct reversed). (Contributed by NM, 1-Dec-2003.)
(𝜑𝜓)       (𝜑 ↔ (𝜓𝜑))

Theorempm4.71d 663 Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by Mario Carneiro, 25-Dec-2016.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 ↔ (𝜓𝜒)))

Theorempm4.71rd 664 Deduction converting an implication to a biconditional with conjunction. Deduction from Theorem *4.71 of [WhiteheadRussell] p. 120. (Contributed by NM, 10-Feb-2005.)
(𝜑 → (𝜓𝜒))       (𝜑 → (𝜓 ↔ (𝜒𝜓)))

Theorempm5.32 665 Distribution of implication over biconditional. Theorem *5.32 of [WhiteheadRussell] p. 125. (Contributed by NM, 1-Aug-1994.)
((𝜑 → (𝜓𝜒)) ↔ ((𝜑𝜓) ↔ (𝜑𝜒)))

Theorempm5.32i 666 Distribution of implication over biconditional (inference rule). (Contributed by NM, 1-Aug-1994.)
(𝜑 → (𝜓𝜒))       ((𝜑𝜓) ↔ (𝜑𝜒))

Theorempm5.32ri 667 Distribution of implication over biconditional (inference rule). (Contributed by NM, 12-Mar-1995.)
(𝜑 → (𝜓𝜒))       ((𝜓𝜑) ↔ (𝜒𝜑))

Theorempm5.32d 668 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 29-Oct-1996.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Theorempm5.32rd 669 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 25-Dec-2004.)
(𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ((𝜒𝜓) ↔ (𝜃𝜓)))

Theorempm5.32da 670 Distribution of implication over biconditional (deduction rule). (Contributed by NM, 9-Dec-2006.)
((𝜑𝜓) → (𝜒𝜃))       (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

(𝜑𝜓)    &   (𝜓 → (𝜑𝜒))       (𝜑 ↔ (𝜓𝜒))

Theorempm4.24 672 Theorem *4.24 of [WhiteheadRussell] p. 117. (Contributed by NM, 11-May-1993.)
(𝜑 ↔ (𝜑𝜑))

Theoremanidm 673 Idempotent law for conjunction. (Contributed by NM, 8-Jan-2004.) (Proof shortened by Wolf Lammen, 14-Mar-2014.)
((𝜑𝜑) ↔ 𝜑)

Theoremanidms 674 Inference from idempotent law for conjunction. (Contributed by NM, 15-Jun-1994.)
((𝜑𝜑) → 𝜓)       (𝜑𝜓)

Theoremanidmdbi 675 Conjunction idempotence with antecedent. (Contributed by Roy F. Longton, 8-Aug-2005.)
((𝜑 → (𝜓𝜓)) ↔ (𝜑𝜓))

Theoremanasss 676 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜑 ∧ (𝜓𝜒)) → 𝜃)

Theoremanassrs 677 Associative law for conjunction applied to antecedent (eliminates syllogism). (Contributed by NM, 15-Nov-2002.)
((𝜑 ∧ (𝜓𝜒)) → 𝜃)       (((𝜑𝜓) ∧ 𝜒) → 𝜃)

Theoremanass 678 Associative law for conjunction. Theorem *4.32 of [WhiteheadRussell] p. 118. (Contributed by NM, 21-Jun-1993.) (Proof shortened by Wolf Lammen, 24-Nov-2012.)
(((𝜑𝜓) ∧ 𝜒) ↔ (𝜑 ∧ (𝜓𝜒)))

Theoremsylanl1 679 A syllogism inference. (Contributed by NM, 10-Mar-2005.)
(𝜑𝜓)    &   (((𝜓𝜒) ∧ 𝜃) → 𝜏)       (((𝜑𝜒) ∧ 𝜃) → 𝜏)

Theoremsylanl2 680 A syllogism inference. (Contributed by NM, 1-Jan-2005.)
(𝜑𝜒)    &   (((𝜓𝜒) ∧ 𝜃) → 𝜏)       (((𝜓𝜑) ∧ 𝜃) → 𝜏)

Theoremsylanr1 681 A syllogism inference. (Contributed by NM, 9-Apr-2005.)
(𝜑𝜒)    &   ((𝜓 ∧ (𝜒𝜃)) → 𝜏)       ((𝜓 ∧ (𝜑𝜃)) → 𝜏)

Theoremsylanr2 682 A syllogism inference. (Contributed by NM, 9-Apr-2005.)
(𝜑𝜃)    &   ((𝜓 ∧ (𝜒𝜃)) → 𝜏)       ((𝜓 ∧ (𝜒𝜑)) → 𝜏)

Theoremsylani 683 A syllogism inference. (Contributed by NM, 2-May-1996.)
(𝜑𝜒)    &   (𝜓 → ((𝜒𝜃) → 𝜏))       (𝜓 → ((𝜑𝜃) → 𝜏))

Theoremsylan2i 684 A syllogism inference. (Contributed by NM, 1-Aug-1994.)
(𝜑𝜃)    &   (𝜓 → ((𝜒𝜃) → 𝜏))       (𝜓 → ((𝜒𝜑) → 𝜏))

Theoremsyl2ani 685 A syllogism inference. (Contributed by NM, 3-Aug-1999.)
(𝜑𝜒)    &   (𝜂𝜃)    &   (𝜓 → ((𝜒𝜃) → 𝜏))       (𝜓 → ((𝜑𝜂) → 𝜏))

Theoremsylan9 686 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.) (Proof shortened by Andrew Salmon, 7-May-2011.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜑𝜃) → (𝜓𝜏))

Theoremsylan9r 687 Nested syllogism inference conjoining dissimilar antecedents. (Contributed by NM, 14-May-1993.)
(𝜑 → (𝜓𝜒))    &   (𝜃 → (𝜒𝜏))       ((𝜃𝜑) → (𝜓𝜏))

Theoremmtand 688 A modus tollens deduction. (Contributed by Jeff Hankins, 19-Aug-2009.)
(𝜑 → ¬ 𝜒)    &   ((𝜑𝜓) → 𝜒)       (𝜑 → ¬ 𝜓)

Theoremmtord 689 A modus tollens deduction involving disjunction. (Contributed by Jeff Hankins, 15-Jul-2009.)
(𝜑 → ¬ 𝜒)    &   (𝜑 → ¬ 𝜃)    &   (𝜑 → (𝜓 → (𝜒𝜃)))       (𝜑 → ¬ 𝜓)

Theoremsyl2anc 690 Syllogism inference combined with contraction. (Contributed by NM, 16-Mar-2012.)
(𝜑𝜓)    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

TheoremhypstkdOLD 691 Obsolete proof of mpidan 700 as of 28-Mar-2021. (Contributed by Stanislas Polu, 9-Mar-2020.) (New usage is discouraged.) (Proof modification is discouraged.)
(((𝜑𝜓) ∧ 𝜒) → 𝜃)    &   (𝜑𝜒)       ((𝜑𝜓) → 𝜃)

Theoremsylancl 692 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝜓)    &   𝜒    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancr 693 Syllogism inference combined with modus ponens. (Contributed by Jeff Madsen, 2-Sep-2009.)
𝜓    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylanbrc 694 Syllogism inference. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝜑𝜓)    &   (𝜑𝜒)    &   (𝜃 ↔ (𝜓𝜒))       (𝜑𝜃)

Theoremsylancb 695 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
(𝜑𝜓)    &   (𝜑𝜒)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancbr 696 A syllogism inference combined with contraction. (Contributed by NM, 3-Sep-2004.)
(𝜓𝜑)    &   (𝜒𝜑)    &   ((𝜓𝜒) → 𝜃)       (𝜑𝜃)

Theoremsylancom 697 Syllogism inference with commutation of antecedents. (Contributed by NM, 2-Jul-2008.)
((𝜑𝜓) → 𝜒)    &   ((𝜒𝜓) → 𝜃)       ((𝜑𝜓) → 𝜃)

Theoremmpdan 698 An inference based on modus ponens. (Contributed by NM, 23-May-1999.) (Proof shortened by Wolf Lammen, 22-Nov-2012.)
(𝜑𝜓)    &   ((𝜑𝜓) → 𝜒)       (𝜑𝜒)

Theoremmpancom 699 An inference based on modus ponens with commutation of antecedents. (Contributed by NM, 28-Oct-2003.) (Proof shortened by Wolf Lammen, 7-Apr-2013.)
(𝜓𝜑)    &   ((𝜑𝜓) → 𝜒)       (𝜓𝜒)

Theoremmpidan 700 A deduction which "stacks" a hypothesis. (Contributed by Stanislas Polu, 9-Mar-2020.) (Proof shortened by Wolf Lammen, 28-Mar-2021.)
(𝜑𝜒)    &   (((𝜑𝜓) ∧ 𝜒) → 𝜃)       ((𝜑𝜓) → 𝜃)

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42428
 Copyright terms: Public domain < Previous  Next >