HomeHome Metamath Proof Explorer
Theorem List (p. 73 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 7201-7300   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremdfoprab2 7201* Class abstraction for operations in terms of class abstraction of ordered pairs. (Contributed by NM, 12-Mar-1995.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
 
Theoremreloprab 7202* An operation class abstraction is a relation. (Contributed by NM, 16-Jun-2004.)
Rel {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabv 7203* If a pair and a class are in a relationship given by a class abstraction of a collection of nested ordered pairs, the involved classes are sets. (Contributed by Alexander van der Vekens, 8-Jul-2018.)
(⟨𝑋, 𝑌⟩{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}𝑍 → (𝑋 ∈ V ∧ 𝑌 ∈ V ∧ 𝑍 ∈ V))
 
Theoremnfoprab1 7204 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝑥{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab2 7205 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
𝑦{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab3 7206 The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
𝑧{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremnfoprab 7207* Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑       𝑤{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabbid 7208* Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 24-Jun-2014.)
𝑥𝜑    &   𝑦𝜑    &   𝑧𝜑    &   (𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremoprabbidv 7209* Equivalent wff's yield equal operation class abstractions (deduction form). (Contributed by NM, 21-Feb-2004.)
(𝜑 → (𝜓𝜒))       (𝜑 → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜒})
 
Theoremoprabbii 7210* Equivalent wff's yield equal operation class abstractions. (Contributed by NM, 28-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremssoprab2 7211 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 5425. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
(∀𝑥𝑦𝑧(𝜑𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓})
 
Theoremssoprab2b 7212 Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2b 5428. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 
Theoremeqoprab2bw 7213* Version of eqoprab2b 7214 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 
Theoremeqoprab2b 7214 Equivalence of ordered pair abstraction subclass and biconditional. Compare eqopab2b 5431. (Contributed by Mario Carneiro, 4-Jan-2017.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓} ↔ ∀𝑥𝑦𝑧(𝜑𝜓))
 
Theoremmpoeq123 7215* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.) (Revised by Mario Carneiro, 19-Mar-2015.)
((𝐴 = 𝐷 ∧ ∀𝑥𝐴 (𝐵 = 𝐸 ∧ ∀𝑦𝐵 𝐶 = 𝐹)) → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq12 7216* An equality theorem for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝐴 = 𝐶𝐵 = 𝐷) → (𝑥𝐴, 𝑦𝐵𝐸) = (𝑥𝐶, 𝑦𝐷𝐸))
 
Theoremmpoeq123dva 7217* An equality deduction for the maps-to notation. (Contributed by Mario Carneiro, 26-Jan-2017.)
(𝜑𝐴 = 𝐷)    &   ((𝜑𝑥𝐴) → 𝐵 = 𝐸)    &   ((𝜑 ∧ (𝑥𝐴𝑦𝐵)) → 𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq123dv 7218* An equality deduction for the maps-to notation. (Contributed by NM, 12-Sep-2011.)
(𝜑𝐴 = 𝐷)    &   (𝜑𝐵 = 𝐸)    &   (𝜑𝐶 = 𝐹)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹))
 
Theoremmpoeq123i 7219 An equality inference for the maps-to notation. (Contributed by NM, 15-Jul-2013.)
𝐴 = 𝐷    &   𝐵 = 𝐸    &   𝐶 = 𝐹       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐷, 𝑦𝐸𝐹)
 
Theoremmpoeq3dva 7220* Slightly more general equality inference for the maps-to notation. (Contributed by NM, 17-Oct-2013.)
((𝜑𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
 
Theoremmpoeq3ia 7221 An equality inference for the maps-to notation. (Contributed by Mario Carneiro, 16-Dec-2013.)
((𝑥𝐴𝑦𝐵) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpoeq3dv 7222* An equality deduction for the maps-to notation restricted to the value of the operation. (Contributed by SO, 16-Jul-2018.)
(𝜑𝐶 = 𝐷)       (𝜑 → (𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷))
 
Theoremnfmpo1 7223 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑥(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremnfmpo2 7224 Bound-variable hypothesis builder for an operation in maps-to notation. (Contributed by NM, 27-Aug-2013.)
𝑦(𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremnfmpo 7225* Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
𝑧𝐴    &   𝑧𝐵    &   𝑧𝐶       𝑧(𝑥𝐴, 𝑦𝐵𝐶)
 
Theorem0mpo0 7226* A mapping operation with empty domain is empty. Generalization of mpo0 7228. (Contributed by AV, 27-Jan-2024.)
((𝐴 = ∅ ∨ 𝐵 = ∅) → (𝑥𝐴, 𝑦𝐵𝐶) = ∅)
 
Theoremmpo0v 7227* A mapping operation with empty domain. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.) (Proof shortened by AV, 27-Jan-2024.)
(𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
 
Theoremmpo0 7228 A mapping operation with empty domain. In this version of mpo0v 7227, the class of the second operator may depend on the first operator. (Contributed by Stefan O'Rear, 29-Jan-2015.) (Revised by Mario Carneiro, 15-May-2015.)
(𝑥 ∈ ∅, 𝑦𝐵𝐶) = ∅
 
Theoremoprab4 7229* Two ways to state the domain of an operation. (Contributed by FL, 24-Jan-2010.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐵) ∧ 𝜑)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremcbvoprab1 7230* Rule used to change first bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 20-Dec-2008.) (Revised by Mario Carneiro, 5-Dec-2016.)
𝑤𝜑    &   𝑥𝜓    &   (𝑥 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab2 7231* Change the second bound variable in an operation abstraction. (Contributed by Jeff Madsen, 11-Jun-2010.) (Revised by Mario Carneiro, 11-Dec-2016.)
𝑤𝜑    &   𝑦𝜓    &   (𝑦 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑤⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12 7232* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 21-Feb-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
𝑤𝜑    &   𝑣𝜑    &   𝑥𝜓    &   𝑦𝜓    &   ((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab12v 7233* Rule used to change first two bound variables in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.)
((𝑥 = 𝑤𝑦 = 𝑣) → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑤, 𝑣⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremcbvoprab3 7234* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 22-Aug-2013.)
𝑤𝜑    &   𝑧𝜓    &   (𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvoprab3v 7235* Rule used to change the third bound variable in an operation abstraction, using implicit substitution. (Contributed by NM, 8-Oct-2004.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑧 = 𝑤 → (𝜑𝜓))       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨⟨𝑥, 𝑦⟩, 𝑤⟩ ∣ 𝜓}
 
Theoremcbvmpox 7236* Rule to change the bound variable in a maps-to function, using implicit substitution. This version of cbvmpo 7237 allows 𝐵 to be a function of 𝑥. (Contributed by NM, 29-Dec-2014.)
𝑧𝐵    &   𝑥𝐷    &   𝑧𝐶    &   𝑤𝐶    &   𝑥𝐸    &   𝑦𝐸    &   (𝑥 = 𝑧𝐵 = 𝐷)    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐸)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐷𝐸)
 
Theoremcbvmpo 7237* Rule to change the bound variable in a maps-to function, using implicit substitution. (Contributed by NM, 17-Dec-2013.)
𝑧𝐶    &   𝑤𝐶    &   𝑥𝐷    &   𝑦𝐷    &   ((𝑥 = 𝑧𝑦 = 𝑤) → 𝐶 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremcbvmpov 7238* Rule to change the bound variable in a maps-to function, using implicit substitution. With a longer proof analogous to cbvmpt 5159, some distinct variable requirements could be eliminated. (Contributed by NM, 11-Jun-2013.)
(𝑥 = 𝑧𝐶 = 𝐸)    &   (𝑦 = 𝑤𝐸 = 𝐷)       (𝑥𝐴, 𝑦𝐵𝐶) = (𝑧𝐴, 𝑤𝐵𝐷)
 
Theoremelimdelov 7239 Eliminate a hypothesis which is a predicate expressing membership in the result of an operator (deduction version). (Contributed by Paul Chapman, 25-Mar-2008.)
(𝜑𝐶 ∈ (𝐴𝐹𝐵))    &   𝑍 ∈ (𝑋𝐹𝑌)       if(𝜑, 𝐶, 𝑍) ∈ (if(𝜑, 𝐴, 𝑋)𝐹if(𝜑, 𝐵, 𝑌))
 
Theoremovif 7240 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, 𝐵)𝐹𝐶) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐶))
 
Theoremovif2 7241 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 1-Oct-2018.)
(𝐴𝐹if(𝜑, 𝐵, 𝐶)) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐹𝐶))
 
Theoremovif12 7242 Move a conditional outside of an operation. (Contributed by Thierry Arnoux, 25-Jan-2017.)
(if(𝜑, 𝐴, 𝐵)𝐹if(𝜑, 𝐶, 𝐷)) = if(𝜑, (𝐴𝐹𝐶), (𝐵𝐹𝐷))
 
Theoremifov 7243 Move a conditional outside of an operation. (Contributed by AV, 11-Nov-2019.)
(𝐴if(𝜑, 𝐹, 𝐺)𝐵) = if(𝜑, (𝐴𝐹𝐵), (𝐴𝐺𝐵))
 
Theoremdmoprab 7244* The domain of an operation class abstraction. (Contributed by NM, 17-Mar-1995.) (Revised by David Abernethy, 19-Jun-2012.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑥, 𝑦⟩ ∣ ∃𝑧𝜑}
 
Theoremdmoprabss 7245* The domain of an operation class abstraction. (Contributed by NM, 24-Aug-1995.)
dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ⊆ (𝐴 × 𝐵)
 
Theoremrnoprab 7246* The range of an operation class abstraction. (Contributed by NM, 30-Aug-2004.) (Revised by David Abernethy, 19-Apr-2013.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦𝜑}
 
Theoremrnoprab2 7247* The range of a restricted operation class abstraction. (Contributed by Scott Fenton, 21-Mar-2012.)
ran {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝜑}
 
Theoremreldmoprab 7248* The domain of an operation class abstraction is a relation. (Contributed by NM, 17-Mar-1995.)
Rel dom {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremoprabss 7249* Structure of an operation class abstraction. (Contributed by NM, 28-Nov-2006.)
{⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ ((V × V) × V)
 
Theoremeloprabga 7250* The law of concretion for operation class abstraction. Compare elopab 5406. (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜓))
 
Theoremeloprabg 7251* The law of concretion for operation class abstraction. Compare elopab 5406. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ ∈ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↔ 𝜃))
 
Theoremssoprab2i 7252* Inference of operation class abstraction subclass from implication. (Contributed by NM, 11-Nov-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝜑𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ⊆ {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜓}
 
Theoremmpov 7253* Operation with universal domain in maps-to notation. (Contributed by NM, 16-Aug-2013.)
(𝑥 ∈ V, 𝑦 ∈ V ↦ 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝑧 = 𝐶}
 
Theoremmpomptx 7254* Express a two-argument function as a one-argument function, or vice-versa. In this version 𝐵(𝑥) is not assumed to be constant w.r.t 𝑥. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 𝑥𝐴 ({𝑥} × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpompt 7255* Express a two-argument function as a one-argument function, or vice-versa. (Contributed by Mario Carneiro, 17-Dec-2013.) (Revised by Mario Carneiro, 29-Dec-2014.)
(𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)       (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
 
Theoremmpodifsnif 7256 A mapping with two arguments with the first argument from a difference set with a singleton and a conditional as result. (Contributed by AV, 13-Feb-2019.)
(𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ (𝐴 ∖ {𝑋}), 𝑗𝐵𝐷)
 
Theoremmposnif 7257 A mapping with two arguments with the first argument from a singleton and a conditional as result. (Contributed by AV, 14-Feb-2019.)
(𝑖 ∈ {𝑋}, 𝑗𝐵 ↦ if(𝑖 = 𝑋, 𝐶, 𝐷)) = (𝑖 ∈ {𝑋}, 𝑗𝐵𝐶)
 
Theoremfconstmpo 7258* Representation of a constant operation using the mapping operation. (Contributed by SO, 11-Jul-2018.)
((𝐴 × 𝐵) × {𝐶}) = (𝑥𝐴, 𝑦𝐵𝐶)
 
Theoremresoprab 7259* Restriction of an operation class abstraction. (Contributed by NM, 10-Feb-2007.)
({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} ↾ (𝐴 × 𝐵)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)}
 
Theoremresoprab2 7260* Restriction of an operator abstraction. (Contributed by Jeff Madsen, 2-Sep-2009.)
((𝐶𝐴𝐷𝐵) → ({⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝜑)} ↾ (𝐶 × 𝐷)) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐶𝑦𝐷) ∧ 𝜑)})
 
Theoremresmpo 7261* Restriction of the mapping operation. (Contributed by Mario Carneiro, 17-Dec-2013.)
((𝐶𝐴𝐷𝐵) → ((𝑥𝐴, 𝑦𝐵𝐸) ↾ (𝐶 × 𝐷)) = (𝑥𝐶, 𝑦𝐷𝐸))
 
Theoremfunoprabg 7262* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦∃*𝑧𝜑 → Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑})
 
Theoremfunoprab 7263* "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 17-Mar-1995.)
∃*𝑧𝜑       Fun {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}
 
Theoremfnoprabg 7264* Functionality and domain of an operation class abstraction. (Contributed by NM, 28-Aug-2007.)
(∀𝑥𝑦(𝜑 → ∃!𝑧𝜓) → {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑})
 
Theoremmpofun 7265* The maps-to notation for an operation is always a function. (Contributed by Scott Fenton, 21-Mar-2012.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Fun 𝐹
 
Theoremfnoprab 7266* Functionality and domain of an operation class abstraction. (Contributed by NM, 15-May-1995.)
(𝜑 → ∃!𝑧𝜓)       {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝜑𝜓)} Fn {⟨𝑥, 𝑦⟩ ∣ 𝜑}
 
Theoremffnov 7267* An operation maps to a class to which all values belong. (Contributed by NM, 7-Feb-2004.)
(𝐹:(𝐴 × 𝐵)⟶𝐶 ↔ (𝐹 Fn (𝐴 × 𝐵) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) ∈ 𝐶))
 
Theoremfovcl 7268 Closure law for an operation. (Contributed by NM, 19-Apr-2007.)
𝐹:(𝑅 × 𝑆)⟶𝐶       ((𝐴𝑅𝐵𝑆) → (𝐴𝐹𝐵) ∈ 𝐶)
 
Theoremeqfnov 7269* Equality of two operations is determined by their values. (Contributed by NM, 1-Sep-2005.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐶 × 𝐷)) → (𝐹 = 𝐺 ↔ ((𝐴 × 𝐵) = (𝐶 × 𝐷) ∧ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦))))
 
Theoremeqfnov2 7270* Two operators with the same domain are equal iff their values at each point in the domain are equal. (Contributed by Jeff Madsen, 7-Jun-2010.)
((𝐹 Fn (𝐴 × 𝐵) ∧ 𝐺 Fn (𝐴 × 𝐵)) → (𝐹 = 𝐺 ↔ ∀𝑥𝐴𝑦𝐵 (𝑥𝐹𝑦) = (𝑥𝐺𝑦)))
 
Theoremfnov 7271* Representation of a function in terms of its values. (Contributed by NM, 7-Feb-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
(𝐹 Fn (𝐴 × 𝐵) ↔ 𝐹 = (𝑥𝐴, 𝑦𝐵 ↦ (𝑥𝐹𝑦)))
 
Theoremmpo2eqb 7272* Bidirectional equality theorem for a mapping abstraction. Equivalent to eqfnov2 7270. (Contributed by Mario Carneiro, 4-Jan-2017.)
(∀𝑥𝐴𝑦𝐵 𝐶𝑉 → ((𝑥𝐴, 𝑦𝐵𝐶) = (𝑥𝐴, 𝑦𝐵𝐷) ↔ ∀𝑥𝐴𝑦𝐵 𝐶 = 𝐷))
 
Theoremrnmpo 7273* The range of an operation given by the maps-to notation. (Contributed by FL, 20-Jun-2011.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ran 𝐹 = {𝑧 ∣ ∃𝑥𝐴𝑦𝐵 𝑧 = 𝐶}
 
Theoremreldmmpo 7274* The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       Rel dom 𝐹
 
Theoremelrnmpog 7275* Membership in the range of an operation class abstraction. (Contributed by NM, 27-Aug-2007.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐷𝑉 → (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶))
 
Theoremelrnmpo 7276* Membership in the range of an operation class abstraction. (Contributed by NM, 1-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   𝐶 ∈ V       (𝐷 ∈ ran 𝐹 ↔ ∃𝑥𝐴𝑦𝐵 𝐷 = 𝐶)
 
Theoremelrnmpores 7277* Membership in the range of a restricted operation class abstraction. (Contributed by Thierry Arnoux, 25-May-2019.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       (𝐷𝑉 → (𝐷 ∈ ran (𝐹𝑅) ↔ ∃𝑥𝐴𝑦𝐵 (𝐷 = 𝐶𝑥𝑅𝑦)))
 
Theoremralrnmpo 7278* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∀𝑧 ∈ ran 𝐹𝜑 ↔ ∀𝑥𝐴𝑦𝐵 𝜓))
 
Theoremrexrnmpo 7279* A restricted quantifier over an image set. (Contributed by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)    &   (𝑧 = 𝐶 → (𝜑𝜓))       (∀𝑥𝐴𝑦𝐵 𝐶𝑉 → (∃𝑧 ∈ ran 𝐹𝜑 ↔ ∃𝑥𝐴𝑦𝐵 𝜓))
 
Theoremovid 7280* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → ((𝑥𝐹𝑦) = 𝑧𝜑))
 
Theoremovidig 7281* The value of an operation class abstraction. Compare ovidi 7282. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by Mario Carneiro, 29-Dec-2014.)
∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       (𝜑 → (𝑥𝐹𝑦) = 𝑧)
 
Theoremovidi 7282* The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
 
Theoremov 7283* The value of an operation class abstraction. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
𝐶 ∈ V    &   (𝑥 = 𝐴 → (𝜑𝜓))    &   (𝑦 = 𝐵 → (𝜓𝜒))    &   (𝑧 = 𝐶 → (𝜒𝜃))    &   ((𝑥𝑅𝑦𝑆) → ∃!𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆) → ((𝐴𝐹𝐵) = 𝐶𝜃))
 
Theoremovigg 7284* The value of an operation class abstraction. Compare ovig 7285. The condition (𝑥𝑅𝑦𝑆) is been removed. (Contributed by FL, 24-Mar-2007.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ∃*𝑧𝜑    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑}       ((𝐴𝑉𝐵𝑊𝐶𝑋) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovig 7285* The value of an operation class abstraction (weak version). (Contributed by NM, 14-Sep-1999.) Remove unnecessary distinct variable conditions. (Revised by David Abernethy, 19-Jun-2012.) (Revised by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵𝑧 = 𝐶) → (𝜑𝜓))    &   ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}       ((𝐴𝑅𝐵𝑆𝐶𝐷) → (𝜓 → (𝐴𝐹𝐵) = 𝐶))
 
Theoremovmpt4g 7286* Value of a function given by the maps-to notation. (This is the operation analogue of fvmpt2 6772.) (Contributed by NM, 21-Feb-2004.) (Revised by Mario Carneiro, 1-Sep-2015.)
𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)       ((𝑥𝐴𝑦𝐵𝐶𝑉) → (𝑥𝐹𝑦) = 𝐶)
 
Theoremovmpos 7287* Value of a function given by the maps-to notation, expressed using explicit substitution. (Contributed by Mario Carneiro, 30-Apr-2015.)
𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝐴 / 𝑥𝐵 / 𝑦𝑅𝑉) → (𝐴𝐹𝐵) = 𝐴 / 𝑥𝐵 / 𝑦𝑅)
 
Theoremov2gf 7288* The value of an operation class abstraction. A version of ovmpog 7298 using bound-variable hypotheses. (Contributed by NM, 17-Aug-2006.) (Revised by Mario Carneiro, 19-Dec-2013.)
𝑥𝐴    &   𝑦𝐴    &   𝑦𝐵    &   𝑥𝐺    &   𝑦𝑆    &   (𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodxf 7289* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)    &   𝑥𝜑    &   𝑦𝜑    &   𝑦𝐴    &   𝑥𝐵    &   𝑥𝑆    &   𝑦𝑆       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodx 7290* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐿)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpod 7291* Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014.)
(𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)    &   (𝜑𝐴𝐶)    &   (𝜑𝐵𝐷)    &   (𝜑𝑆𝑋)       (𝜑 → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpox 7292* The value of an operation class abstraction. Variant of ovmpoga 7293 which does not require 𝐷 and 𝑥 to be distinct. (Contributed by Jeff Madsen, 10-Jun-2010.) (Revised by Mario Carneiro, 20-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   (𝑥 = 𝐴𝐷 = 𝐿)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐿𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpoga 7293* Value of an operation given by a maps-to rule. (Contributed by Mario Carneiro, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpoa 7294* Value of an operation given by a maps-to rule. (Contributed by NM, 19-Dec-2013.)
((𝑥 = 𝐴𝑦 = 𝐵) → 𝑅 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)    &   𝑆 ∈ V       ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpodf 7295* Alternate deduction version of ovmpo 7299, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))    &   𝑥𝐹    &   𝑥𝜓    &   𝑦𝐹    &   𝑦𝜓       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
 
Theoremovmpodv 7296* Alternate deduction version of ovmpo 7299, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → ((𝐴𝐹𝐵) = 𝑅𝜓))       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → 𝜓))
 
Theoremovmpodv2 7297* Alternate deduction version of ovmpo 7299, suitable for iteration. (Contributed by Mario Carneiro, 7-Jan-2017.)
(𝜑𝐴𝐶)    &   ((𝜑𝑥 = 𝐴) → 𝐵𝐷)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅𝑉)    &   ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)       (𝜑 → (𝐹 = (𝑥𝐶, 𝑦𝐷𝑅) → (𝐴𝐹𝐵) = 𝑆))
 
Theoremovmpog 7298* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)       ((𝐴𝐶𝐵𝐷𝑆𝐻) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremovmpo 7299* Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 16-May-1995.) (Revised by David Abernethy, 19-Jun-2012.)
(𝑥 = 𝐴𝑅 = 𝐺)    &   (𝑦 = 𝐵𝐺 = 𝑆)    &   𝐹 = (𝑥𝐶, 𝑦𝐷𝑅)    &   𝑆 ∈ V       ((𝐴𝐶𝐵𝐷) → (𝐴𝐹𝐵) = 𝑆)
 
Theoremov3 7300* The value of an operation class abstraction. Special case. (Contributed by NM, 28-May-1995.) (Revised by Mario Carneiro, 29-Dec-2014.)
𝑆 ∈ V    &   (((𝑤 = 𝐴𝑣 = 𝐵) ∧ (𝑢 = 𝐶𝑓 = 𝐷)) → 𝑅 = 𝑆)    &   𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥 ∈ (𝐻 × 𝐻) ∧ 𝑦 ∈ (𝐻 × 𝐻)) ∧ ∃𝑤𝑣𝑢𝑓((𝑥 = ⟨𝑤, 𝑣⟩ ∧ 𝑦 = ⟨𝑢, 𝑓⟩) ∧ 𝑧 = 𝑅))}       (((𝐴𝐻𝐵𝐻) ∧ (𝐶𝐻𝐷𝐻)) → (⟨𝐴, 𝐵𝐹𝐶, 𝐷⟩) = 𝑆)
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >