HomeHome Metamath Proof Explorer
Theorem List (p. 85 of 449)
< Previous  Next >
Bad symbols? Try the
GIF version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-28623)
  Hilbert Space Explorer  Hilbert Space Explorer
(28624-30146)
  Users' Mathboxes  Users' Mathboxes
(30147-44804)
 

Theorem List for Metamath Proof Explorer - 8401-8500   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theorempmex 8401* The class of all partial functions from one set to another is a set. (Contributed by NM, 15-Nov-2007.)
((𝐴𝐶𝐵𝐷) → {𝑓 ∣ (Fun 𝑓𝑓 ⊆ (𝐴 × 𝐵))} ∈ V)
 
Theoremmapex 8402* The class of all functions mapping one set to another is a set. Remark after Definition 10.24 of [Kunen] p. 31. (Contributed by Raph Levien, 4-Dec-2003.)
((𝐴𝐶𝐵𝐷) → {𝑓𝑓:𝐴𝐵} ∈ V)
 
Theoremfnmap 8403 Set exponentiation has a universal domain. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
m Fn (V × V)
 
Theoremfnpm 8404 Partial function exponentiation has a universal domain. (Contributed by Mario Carneiro, 14-Nov-2013.)
pm Fn (V × V)
 
Theoremreldmmap 8405 Set exponentiation is a well-behaved binary operator. (Contributed by Stefan O'Rear, 27-Feb-2015.)
Rel dom ↑m
 
Theoremmapvalg 8406* The value of set exponentiation. (𝐴m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴𝐶𝐵𝐷) → (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴})
 
Theorempmvalg 8407* The value of the partial mapping operation. (𝐴pm 𝐵) is the set of all partial functions that map from 𝐵 to 𝐴. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 8-Sep-2013.)
((𝐴𝐶𝐵𝐷) → (𝐴pm 𝐵) = {𝑓 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑓})
 
Theoremmapval 8408* The value of set exponentiation (inference version). (𝐴m 𝐵) is the set of all functions that map from 𝐵 to 𝐴. Definition 10.24 of [Kunen] p. 24. (Contributed by NM, 8-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴m 𝐵) = {𝑓𝑓:𝐵𝐴}
 
Theoremelmapg 8409 Membership relation for set exponentiation. (Contributed by NM, 17-Oct-2006.) (Revised by Mario Carneiro, 15-Nov-2014.)
((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
 
Theoremelmapd 8410 Deduction form of elmapg 8409. (Contributed by BJ, 11-Apr-2020.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐶 ∈ (𝐴m 𝐵) ↔ 𝐶:𝐵𝐴))
 
Theoremmapdm0 8411 The empty set is the only map with empty domain. (Contributed by Glauco Siliprandi, 11-Oct-2020.) (Proof shortened by Thierry Arnoux, 3-Dec-2021.)
(𝐵𝑉 → (𝐵m ∅) = {∅})
 
Theoremelpmg 8412 The predicate "is a partial function." (Contributed by Mario Carneiro, 14-Nov-2013.)
((𝐴𝑉𝐵𝑊) → (𝐶 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐶𝐶 ⊆ (𝐵 × 𝐴))))
 
Theoremelpm2g 8413 The predicate "is a partial function." (Contributed by NM, 31-Dec-2013.)
((𝐴𝑉𝐵𝑊) → (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵)))
 
Theoremelpm2r 8414 Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.)
(((𝐴𝑉𝐵𝑊) ∧ (𝐹:𝐶𝐴𝐶𝐵)) → 𝐹 ∈ (𝐴pm 𝐵))
 
Theoremelpmi 8415 A partial function is a function. (Contributed by Mario Carneiro, 15-Sep-2015.)
(𝐹 ∈ (𝐴pm 𝐵) → (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
 
Theorempmfun 8416 A partial function is a function. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐹 ∈ (𝐴pm 𝐵) → Fun 𝐹)
 
Theoremelmapex 8417 Eliminate antecedent for mapping theorems: domain can be taken to be a set. (Contributed by Stefan O'Rear, 8-Oct-2014.)
(𝐴 ∈ (𝐵m 𝐶) → (𝐵 ∈ V ∧ 𝐶 ∈ V))
 
Theoremelmapi 8418 A mapping is a function, forward direction only with superfluous antecedent removed. (Contributed by Stefan O'Rear, 10-Oct-2014.)
(𝐴 ∈ (𝐵m 𝐶) → 𝐴:𝐶𝐵)
 
Theoremelmapfn 8419 A mapping is a function with the appropriate domain. (Contributed by AV, 6-Apr-2019.)
(𝐴 ∈ (𝐵m 𝐶) → 𝐴 Fn 𝐶)
 
Theoremelmapfun 8420 A mapping is always a function. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 5-May-2015.)
(𝐴 ∈ (𝐵m 𝐶) → Fun 𝐴)
 
Theoremelmapssres 8421 A restricted mapping is a mapping. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Mario Carneiro, 5-May-2015.)
((𝐴 ∈ (𝐵m 𝐶) ∧ 𝐷𝐶) → (𝐴𝐷) ∈ (𝐵m 𝐷))
 
Theoremfpmg 8422 A total function is a partial function. (Contributed by Mario Carneiro, 31-Dec-2013.)
((𝐴𝑉𝐵𝑊𝐹:𝐴𝐵) → 𝐹 ∈ (𝐵pm 𝐴))
 
Theorempmss12g 8423 Subset relation for the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
(((𝐴𝐶𝐵𝐷) ∧ (𝐶𝑉𝐷𝑊)) → (𝐴pm 𝐵) ⊆ (𝐶pm 𝐷))
 
Theorempmresg 8424 Elementhood of a restricted function in the set of partial functions. (Contributed by Mario Carneiro, 31-Dec-2013.)
((𝐵𝑉𝐹 ∈ (𝐴pm 𝐶)) → (𝐹𝐵) ∈ (𝐴pm 𝐵))
 
Theoremelmap 8425 Membership relation for set exponentiation. (Contributed by NM, 8-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴m 𝐵) ↔ 𝐹:𝐵𝐴)
 
Theoremmapval2 8426* Alternate expression for the value of set exponentiation. (Contributed by NM, 3-Nov-2007.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴m 𝐵) = (𝒫 (𝐵 × 𝐴) ∩ {𝑓𝑓 Fn 𝐵})
 
Theoremelpm 8427 The predicate "is a partial function." (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 14-Nov-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴pm 𝐵) ↔ (Fun 𝐹𝐹 ⊆ (𝐵 × 𝐴)))
 
Theoremelpm2 8428 The predicate "is a partial function." (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹 ∈ (𝐴pm 𝐵) ↔ (𝐹:dom 𝐹𝐴 ∧ dom 𝐹𝐵))
 
Theoremfpm 8429 A total function is a partial function. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 31-Dec-2013.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐹:𝐴𝐵𝐹 ∈ (𝐵pm 𝐴))
 
Theoremmapsspm 8430 Set exponentiation is a subset of partial maps. (Contributed by NM, 15-Nov-2007.) (Revised by Mario Carneiro, 27-Feb-2016.)
(𝐴m 𝐵) ⊆ (𝐴pm 𝐵)
 
Theorempmsspw 8431 Partial maps are a subset of the power set of the Cartesian product of its arguments. (Contributed by Mario Carneiro, 2-Jan-2017.)
(𝐴pm 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
 
Theoremmapsspw 8432 Set exponentiation is a subset of the power set of the Cartesian product of its arguments. (Contributed by NM, 8-Dec-2006.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴m 𝐵) ⊆ 𝒫 (𝐵 × 𝐴)
 
Theoremmapfvd 8433 The value of a function that maps from 𝐵 to 𝐴. (Contributed by AV, 2-Feb-2023.)
𝑀 = (𝐴m 𝐵)    &   (𝜑𝐹𝑀)    &   (𝜑𝑋𝐵)       (𝜑 → (𝐹𝑋) ∈ 𝐴)
 
Theoremelmapresaun 8434 fresaun 6543 transposed to mappings. (Contributed by Stefan O'Rear, 9-Oct-2014.) (Revised by Stefan O'Rear, 6-May-2015.)
((𝐹 ∈ (𝐶m 𝐴) ∧ 𝐺 ∈ (𝐶m 𝐵) ∧ (𝐹 ↾ (𝐴𝐵)) = (𝐺 ↾ (𝐴𝐵))) → (𝐹𝐺) ∈ (𝐶m (𝐴𝐵)))
 
Theoremfvmptmap 8435* Special case of fvmpt 6762 for operator theorems. (Contributed by NM, 27-Nov-2007.)
𝐶 ∈ V    &   𝐷 ∈ V    &   𝑅 ∈ V    &   (𝑥 = 𝐴𝐵 = 𝐶)    &   𝐹 = (𝑥 ∈ (𝑅m 𝐷) ↦ 𝐵)       (𝐴:𝐷𝑅 → (𝐹𝐴) = 𝐶)
 
Theoremmap0e 8436 Set exponentiation with an empty exponent (ordinal number 0) is ordinal number 1. Exercise 4.42(a) of [Mendelson] p. 255. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 30-Apr-2015.) (Proof shortened by AV, 14-Jul-2022.)
(𝐴𝑉 → (𝐴m ∅) = 1o)
 
Theoremmap0b 8437 Set exponentiation with an empty base is the empty set, provided the exponent is nonempty. Theorem 96 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
(𝐴 ≠ ∅ → (∅ ↑m 𝐴) = ∅)
 
Theoremmap0g 8438 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by Mario Carneiro, 30-Apr-2015.)
((𝐴𝑉𝐵𝑊) → ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅)))
 
Theoremmapsnd 8439* The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Glauco Siliprandi, 24-Dec-2020.)
(𝜑𝐴𝑉)    &   (𝜑𝐵𝑊)       (𝜑 → (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}})
 
Theoremmap0 8440 Set exponentiation is empty iff the base is empty and the exponent is not empty. Theorem 97 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.)
𝐴 ∈ V    &   𝐵 ∈ V       ((𝐴m 𝐵) = ∅ ↔ (𝐴 = ∅ ∧ 𝐵 ≠ ∅))
 
Theoremmapsn 8441* The value of set exponentiation with a singleton exponent. Theorem 98 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Proof shortened by AV, 17-Jul-2022.)
𝐴 ∈ V    &   𝐵 ∈ V       (𝐴m {𝐵}) = {𝑓 ∣ ∃𝑦𝐴 𝑓 = {⟨𝐵, 𝑦⟩}}
 
Theoremmapss 8442 Subset inheritance for set exponentiation. Theorem 99 of [Suppes] p. 89. (Contributed by NM, 10-Dec-2003.) (Revised by Mario Carneiro, 26-Apr-2015.)
((𝐵𝑉𝐴𝐵) → (𝐴m 𝐶) ⊆ (𝐵m 𝐶))
 
Theoremfdiagfn 8443* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))       ((𝐵𝑉𝐼𝑊) → 𝐹:𝐵⟶(𝐵m 𝐼))
 
Theoremfvdiagfn 8444* Functionality of the diagonal map. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐵 ↦ (𝐼 × {𝑥}))       ((𝐼𝑊𝑋𝐵) → (𝐹𝑋) = (𝐼 × {𝑋}))
 
Theoremmapsnconst 8445 Every singleton map is a constant function. (Contributed by Stefan O'Rear, 25-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V       (𝐹 ∈ (𝐵m 𝑆) → 𝐹 = (𝑆 × {(𝐹𝑋)}))
 
Theoremmapsncnv 8446* Expression for the inverse of the canonical map between a set and its set of singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))       𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))
 
Theoremmapsnf1o2 8447* Explicit bijection between a set and its singleton functions. (Contributed by Stefan O'Rear, 21-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑥 ∈ (𝐵m 𝑆) ↦ (𝑥𝑋))       𝐹:(𝐵m 𝑆)–1-1-onto𝐵
 
Theoremmapsnf1o3 8448* Explicit bijection in the reverse of mapsnf1o2 8447. (Contributed by Stefan O'Rear, 24-Mar-2015.)
𝑆 = {𝑋}    &   𝐵 ∈ V    &   𝑋 ∈ V    &   𝐹 = (𝑦𝐵 ↦ (𝑆 × {𝑦}))       𝐹:𝐵1-1-onto→(𝐵m 𝑆)
 
Theoremralxpmap 8449* Quantification over functions in terms of quantification over values and punctured functions. (Contributed by Stefan O'Rear, 27-Feb-2015.) (Revised by Stefan O'Rear, 5-May-2015.)
(𝑓 = (𝑔 ∪ {⟨𝐽, 𝑦⟩}) → (𝜑𝜓))       (𝐽𝑇 → (∀𝑓 ∈ (𝑆m 𝑇)𝜑 ↔ ∀𝑦𝑆𝑔 ∈ (𝑆m (𝑇 ∖ {𝐽}))𝜓))
 
2.4.23  Infinite Cartesian products
 
Syntaxcixp 8450 Extend class notation to include infinite Cartesian products.
class X𝑥𝐴 𝐵
 
Definitiondf-ixp 8451* Definition of infinite Cartesian product of [Enderton] p. 54. Enderton uses a bold "X" with 𝑥𝐴 written underneath or as a subscript, as does Stoll p. 47. Some books use a capital pi, but we will reserve that notation for products of numbers. Usually 𝐵 represents a class expression containing 𝑥 free and thus can be thought of as 𝐵(𝑥). Normally, 𝑥 is not free in 𝐴, although this is not a requirement of the definition. (Contributed by NM, 28-Sep-2006.)
X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
 
Theoremdfixp 8452* Eliminate the expression {𝑥𝑥𝐴} in df-ixp 8451, under the assumption that 𝐴 and 𝑥 are disjoint. This way, we can say that 𝑥 is bound in X𝑥𝐴𝐵 even if it appears free in 𝐴. (Contributed by Mario Carneiro, 12-Aug-2016.)
X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn 𝐴 ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
 
Theoremixpsnval 8453* The value of an infinite Cartesian product with a singleton. (Contributed by AV, 3-Dec-2018.)
(𝑋𝑉X𝑥 ∈ {𝑋}𝐵 = {𝑓 ∣ (𝑓 Fn {𝑋} ∧ (𝑓𝑋) ∈ 𝑋 / 𝑥𝐵)})
 
Theoremelixp2 8454* Membership in an infinite Cartesian product. See df-ixp 8451 for discussion of the notation. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵 ↔ (𝐹 ∈ V ∧ 𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremfvixp 8455* Projection of a factor of an indexed Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝑥 = 𝐶𝐵 = 𝐷)       ((𝐹X𝑥𝐴 𝐵𝐶𝐴) → (𝐹𝐶) ∈ 𝐷)
 
Theoremixpfn 8456* A nuple is a function. (Contributed by FL, 6-Jun-2011.) (Revised by Mario Carneiro, 31-May-2014.)
(𝐹X𝑥𝐴 𝐵𝐹 Fn 𝐴)
 
Theoremelixp 8457* Membership in an infinite Cartesian product. (Contributed by NM, 28-Sep-2006.)
𝐹 ∈ V       (𝐹X𝑥𝐴 𝐵 ↔ (𝐹 Fn 𝐴 ∧ ∀𝑥𝐴 (𝐹𝑥) ∈ 𝐵))
 
Theoremelixpconst 8458* Membership in an infinite Cartesian product of a constant 𝐵. (Contributed by NM, 12-Apr-2008.)
𝐹 ∈ V       (𝐹X𝑥𝐴 𝐵𝐹:𝐴𝐵)
 
Theoremixpconstg 8459* Infinite Cartesian product of a constant 𝐵. (Contributed by Mario Carneiro, 11-Jan-2015.)
((𝐴𝑉𝐵𝑊) → X𝑥𝐴 𝐵 = (𝐵m 𝐴))
 
Theoremixpconst 8460* Infinite Cartesian product of a constant 𝐵. (Contributed by NM, 28-Sep-2006.)
𝐴 ∈ V    &   𝐵 ∈ V       X𝑥𝐴 𝐵 = (𝐵m 𝐴)
 
Theoremixpeq1 8461* Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
(𝐴 = 𝐵X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
 
Theoremixpeq1d 8462* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐴 = 𝐵)       (𝜑X𝑥𝐴 𝐶 = X𝑥𝐵 𝐶)
 
Theoremss2ixp 8463 Subclass theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.) (Revised by Mario Carneiro, 12-Aug-2016.)
(∀𝑥𝐴 𝐵𝐶X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremixpeq2 8464 Equality theorem for infinite Cartesian product. (Contributed by NM, 29-Sep-2006.)
(∀𝑥𝐴 𝐵 = 𝐶X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremixpeq2dva 8465* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
((𝜑𝑥𝐴) → 𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremixpeq2dv 8466* Equality theorem for infinite Cartesian product. (Contributed by Mario Carneiro, 11-Jun-2016.)
(𝜑𝐵 = 𝐶)       (𝜑X𝑥𝐴 𝐵 = X𝑥𝐴 𝐶)
 
Theoremcbvixp 8467* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 20-Jun-2011.)
𝑦𝐵    &   𝑥𝐶    &   (𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremcbvixpv 8468* Change bound variable in an indexed Cartesian product. (Contributed by Jeff Madsen, 2-Sep-2009.)
(𝑥 = 𝑦𝐵 = 𝐶)       X𝑥𝐴 𝐵 = X𝑦𝐴 𝐶
 
Theoremnfixpw 8469* Version of nfixp 8470 with a disjoint variable condition, which does not require ax-13 2383. (Contributed by Gino Giotto, 26-Jan-2024.)
𝑦𝐴    &   𝑦𝐵       𝑦X𝑥𝐴 𝐵
 
Theoremnfixp 8470 Bound-variable hypothesis builder for indexed Cartesian product. (Contributed by Mario Carneiro, 15-Oct-2016.)
𝑦𝐴    &   𝑦𝐵       𝑦X𝑥𝐴 𝐵
 
Theoremnfixp1 8471 The index variable in an indexed Cartesian product is not free. (Contributed by Jeff Madsen, 19-Jun-2011.) (Revised by Mario Carneiro, 15-Oct-2016.)
𝑥X𝑥𝐴 𝐵
 
Theoremixpprc 8472* A cartesian product of proper-class many sets is empty, because any function in the cartesian product has to be a set with domain 𝐴, which is not possible for a proper class domain. (Contributed by Mario Carneiro, 25-Jan-2015.)
𝐴 ∈ V → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpf 8473* A member of an infinite Cartesian product maps to the indexed union of the product argument. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
(𝐹X𝑥𝐴 𝐵𝐹:𝐴 𝑥𝐴 𝐵)
 
Theoremuniixp 8474* The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 24-Jun-2015.)
X𝑥𝐴 𝐵 ⊆ (𝐴 × 𝑥𝐴 𝐵)
 
Theoremixpexg 8475* The existence of an infinite Cartesian product. 𝑥 is normally a free-variable parameter in 𝐵. Remark in Enderton p. 54. (Contributed by NM, 28-Sep-2006.) (Revised by Mario Carneiro, 25-Jan-2015.)
(∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ∈ V)
 
Theoremixpin 8476* The intersection of two infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
X𝑥𝐴 (𝐵𝐶) = (X𝑥𝐴 𝐵X𝑥𝐴 𝐶)
 
Theoremixpiin 8477* The indexed intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 6-Feb-2015.)
(𝐵 ≠ ∅ → X𝑥𝐴 𝑦𝐵 𝐶 = 𝑦𝐵 X𝑥𝐴 𝐶)
 
Theoremixpint 8478* The intersection of a collection of infinite Cartesian products. (Contributed by Mario Carneiro, 3-Feb-2015.)
(𝐵 ≠ ∅ → X𝑥𝐴 𝐵 = 𝑦𝐵 X𝑥𝐴 𝑦)
 
Theoremixp0x 8479 An infinite Cartesian product with an empty index set. (Contributed by NM, 21-Sep-2007.)
X𝑥 ∈ ∅ 𝐴 = {∅}
 
Theoremixpssmap2g 8480* An infinite Cartesian product is a subset of set exponentiation. This version of ixpssmapg 8481 avoids ax-rep 5182. (Contributed by Mario Carneiro, 16-Nov-2014.)
( 𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
 
Theoremixpssmapg 8481* An infinite Cartesian product is a subset of set exponentiation. (Contributed by Jeff Madsen, 19-Jun-2011.)
(∀𝑥𝐴 𝐵𝑉X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴))
 
Theorem0elixp 8482 Membership of the empty set in an infinite Cartesian product. (Contributed by Steve Rodriguez, 29-Sep-2006.)
∅ ∈ X𝑥 ∈ ∅ 𝐴
 
Theoremixpn0 8483 The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 9894. (Contributed by Mario Carneiro, 22-Jun-2016.)
(X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
 
Theoremixp0 8484 The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 9894. (Contributed by NM, 1-Oct-2006.) (Proof shortened by Mario Carneiro, 22-Jun-2016.)
(∃𝑥𝐴 𝐵 = ∅ → X𝑥𝐴 𝐵 = ∅)
 
Theoremixpssmap 8485* An infinite Cartesian product is a subset of set exponentiation. Remark in [Enderton] p. 54. (Contributed by NM, 28-Sep-2006.)
𝐵 ∈ V       X𝑥𝐴 𝐵 ⊆ ( 𝑥𝐴 𝐵m 𝐴)
 
Theoremresixp 8486* Restriction of an element of an infinite Cartesian product. (Contributed by FL, 7-Nov-2011.) (Proof shortened by Mario Carneiro, 31-May-2014.)
((𝐵𝐴𝐹X𝑥𝐴 𝐶) → (𝐹𝐵) ∈ X𝑥𝐵 𝐶)
 
Theoremundifixp 8487* Union of two projections of a cartesian product. (Contributed by FL, 7-Nov-2011.)
((𝐹X𝑥𝐵 𝐶𝐺X𝑥 ∈ (𝐴𝐵)𝐶𝐵𝐴) → (𝐹𝐺) ∈ X𝑥𝐴 𝐶)
 
Theoremmptelixpg 8488* Condition for an explicit member of an indexed product. (Contributed by Stefan O'Rear, 4-Jan-2015.)
(𝐼𝑉 → ((𝑥𝐼𝐽) ∈ X𝑥𝐼 𝐾 ↔ ∀𝑥𝐼 𝐽𝐾))
 
Theoremresixpfo 8489* Restriction of elements of an infinite Cartesian product creates a surjection, if the original Cartesian product is nonempty. (Contributed by Mario Carneiro, 27-Aug-2015.)
𝐹 = (𝑓X𝑥𝐴 𝐶 ↦ (𝑓𝐵))       ((𝐵𝐴X𝑥𝐴 𝐶 ≠ ∅) → 𝐹:X𝑥𝐴 𝐶ontoX𝑥𝐵 𝐶)
 
Theoremelixpsn 8490* Membership in a class of singleton functions. (Contributed by Stefan O'Rear, 24-Jan-2015.)
(𝐴𝑉 → (𝐹X𝑥 ∈ {𝐴}𝐵 ↔ ∃𝑦𝐵 𝐹 = {⟨𝐴, 𝑦⟩}))
 
Theoremixpsnf1o 8491* A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       (𝐼𝑉𝐹:𝐴1-1-ontoX𝑦 ∈ {𝐼}𝐴)
 
Theoremmapsnf1o 8492* A bijection between a set and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
𝐹 = (𝑥𝐴 ↦ ({𝐼} × {𝑥}))       ((𝐴𝑉𝐼𝑊) → 𝐹:𝐴1-1-onto→(𝐴m {𝐼}))
 
Theoremboxriin 8493* A rectangular subset of a rectangular set can be recovered as the relative intersection of single-axis restrictions. (Contributed by Stefan O'Rear, 22-Feb-2015.)
(∀𝑥𝐼 𝐴𝐵X𝑥𝐼 𝐴 = (X𝑥𝐼 𝐵 𝑦𝐼 X𝑥𝐼 if(𝑥 = 𝑦, 𝐴, 𝐵)))
 
Theoremboxcutc 8494* The relative complement of a box set restricted on one axis. (Contributed by Stefan O'Rear, 22-Feb-2015.)
((𝑋𝐴 ∧ ∀𝑘𝐴 𝐶𝐵) → (X𝑘𝐴 𝐵X𝑘𝐴 if(𝑘 = 𝑋, 𝐶, 𝐵)) = X𝑘𝐴 if(𝑘 = 𝑋, (𝐵𝐶), 𝐵))
 
2.4.24  Equinumerosity
 
Syntaxcen 8495 Extend class definition to include the equinumerosity relation ("approximately equals" symbol)
class
 
Syntaxcdom 8496 Extend class definition to include the dominance relation (curly "less than or equal to")
class
 
Syntaxcsdm 8497 Extend class definition to include the strict dominance relation (curly less-than)
class
 
Syntaxcfn 8498 Extend class definition to include the class of all finite sets.
class Fin
 
Definitiondf-en 8499* Define the equinumerosity relation. Definition of [Enderton] p. 129. We define to be a binary relation rather than a connective, so its arguments must be sets to be meaningful. This is acceptable because we do not consider equinumerosity for proper classes. We derive the usual definition as bren 8507. (Contributed by NM, 28-Mar-1998.)
≈ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1-onto𝑦}
 
Definitiondf-dom 8500* Define the dominance relation. For an alternate definition see dfdom2 8524. Compare Definition of [Enderton] p. 145. Typical textbook definitions are derived as brdom 8510 and domen 8511. (Contributed by NM, 28-Mar-1998.)
≼ = {⟨𝑥, 𝑦⟩ ∣ ∃𝑓 𝑓:𝑥1-1𝑦}
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42600 427 42601-42700 428 42701-42800 429 42801-42900 430 42901-43000 431 43001-43100 432 43101-43200 433 43201-43300 434 43301-43400 435 43401-43500 436 43501-43600 437 43601-43700 438 43701-43800 439 43801-43900 440 43901-44000 441 44001-44100 442 44101-44200 443 44201-44300 444 44301-44400 445 44401-44500 446 44501-44600 447 44601-44700 448 44701-44800 449 44801-44804
  Copyright terms: Public domain < Previous  Next >