MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndlid Structured version   Visualization version   GIF version

Theorem mndlid 17243
Description: The identity element of a monoid is a left identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndlid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)

Proof of Theorem mndlid
StepHypRef Expression
1 mndlrid.b . . 3 𝐵 = (Base‘𝐺)
2 mndlrid.p . . 3 + = (+g𝐺)
3 mndlrid.o . . 3 0 = (0g𝐺)
41, 2, 3mndlrid 17242 . 2 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
54simpld 475 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → ( 0 + 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5852  (class class class)co 6610  Basecbs 15792  +gcplusg 15873  0gc0g 16032  Mndcmnd 17226
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3191  df-sbc 3422  df-dif 3562  df-un 3564  df-in 3566  df-ss 3573  df-nul 3897  df-if 4064  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-iota 5815  df-fun 5854  df-fv 5860  df-riota 6571  df-ov 6613  df-0g 16034  df-mgm 17174  df-sgrp 17216  df-mnd 17227
This theorem is referenced by:  issubmnd  17250  ress0g  17251  submnd0  17252  prdsidlem  17254  imasmnd  17260  0mhm  17290  mrcmndind  17298  gsumccat  17310  dfgrp2  17379  grplid  17384  dfgrp3  17446  mhmid  17468  mhmmnd  17469  mulgnn0p1  17484  mulgnn0z  17499  mulgnn0dir  17503  cntzsubm  17700  oppgmnd  17716  odmodnn0  17891  lsmub2x  17994  mulgnn0di  18163  gsumval3  18240  gsumzaddlem  18253  gsumzsplit  18259  srgbinomlem4  18475  dsmmacl  20017  mndvlid  20131  dmatmul  20235  mndifsplit  20374  tsmssplit  21878  omndmul2  29521  omndmul3  29522  slmd0vlid  29584  c0mgm  41223  c0mhm  41224  c0snmgmhm  41228  cznrng  41269  mndpsuppss  41466
  Copyright terms: Public domain W3C validator