MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndlrid Structured version   Visualization version   GIF version

Theorem mndlrid 17250
Description: A monoid's identity element is a two-sided identity. (Contributed by NM, 18-Aug-2011.)
Hypotheses
Ref Expression
mndlrid.b 𝐵 = (Base‘𝐺)
mndlrid.p + = (+g𝐺)
mndlrid.o 0 = (0g𝐺)
Assertion
Ref Expression
mndlrid ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))

Proof of Theorem mndlrid
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndlrid.b . 2 𝐵 = (Base‘𝐺)
2 mndlrid.o . 2 0 = (0g𝐺)
3 mndlrid.p . 2 + = (+g𝐺)
41, 3mndid 17243 . 2 (𝐺 ∈ Mnd → ∃𝑦𝐵𝑥𝐵 ((𝑦 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑦) = 𝑥))
51, 2, 3, 4mgmlrid 17206 1 ((𝐺 ∈ Mnd ∧ 𝑋𝐵) → (( 0 + 𝑋) = 𝑋 ∧ (𝑋 + 0 ) = 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  cfv 5857  (class class class)co 6615  Basecbs 15800  +gcplusg 15881  0gc0g 16040  Mndcmnd 17234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-mpt 4685  df-id 4999  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-iota 5820  df-fun 5859  df-fv 5865  df-riota 6576  df-ov 6618  df-0g 16042  df-mgm 17182  df-sgrp 17224  df-mnd 17235
This theorem is referenced by:  mndlid  17251  mndrid  17252  gsumvallem2  17312  gsumsubm  17313  srgidmlem  18460  ringidmlem  18510  frlmgsum  20051
  Copyright terms: Public domain W3C validator