Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcongi Structured version   Visualization version   GIF version

Theorem mndodcongi 18051
 Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcongi ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcongi
StepHypRef Expression
1 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
3 odid.3 . . . . . 6 · = (.g𝐺)
4 odid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4mndodcong 18050 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
65biimpd 219 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
763expia 1114 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
873impa 1100 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
9 nn0z 11481 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 nn0z 11481 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 zsubcl 11500 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
129, 10, 11syl2an 495 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℤ)
13123ad2ant3 1127 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀𝑁) ∈ ℤ)
14 0dvds 15093 . . . . 5 ((𝑀𝑁) ∈ ℤ → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
1513, 14syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
16 nn0cn 11383 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
17 nn0cn 11383 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
18 subeq0 10388 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1916, 17, 18syl2an 495 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
20193ad2ant3 1127 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
21 oveq1 6740 . . . . 5 (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2220, 21syl6bi 243 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
2315, 22sylbid 230 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
24 breq1 4731 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ 0 ∥ (𝑀𝑁)))
2524imbi1d 330 . . 3 ((𝑂𝐴) = 0 → (((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
2623, 25syl5ibrcom 237 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
271, 2odcl 18044 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
28273ad2ant2 1126 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑂𝐴) ∈ ℕ0)
29 elnn0 11375 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
3028, 29sylib 208 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
318, 26, 30mpjaod 395 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∨ wo 382   ∧ wa 383   ∧ w3a 1072   = wceq 1564   ∈ wcel 2071   class class class wbr 4728  ‘cfv 5969  (class class class)co 6733  ℂcc 10015  0cc0 10017   − cmin 10347  ℕcn 11101  ℕ0cn0 11373  ℤcz 11458   ∥ cdvds 15071  Basecbs 15948  0gc0g 16191  Mndcmnd 17384  .gcmg 17630  odcod 18033 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1818  ax-5 1920  ax-6 1986  ax-7 2022  ax-8 2073  ax-9 2080  ax-10 2100  ax-11 2115  ax-12 2128  ax-13 2323  ax-ext 2672  ax-rep 4847  ax-sep 4857  ax-nul 4865  ax-pow 4916  ax-pr 4979  ax-un 7034  ax-inf2 8619  ax-cnex 10073  ax-resscn 10074  ax-1cn 10075  ax-icn 10076  ax-addcl 10077  ax-addrcl 10078  ax-mulcl 10079  ax-mulrcl 10080  ax-mulcom 10081  ax-addass 10082  ax-mulass 10083  ax-distr 10084  ax-i2m1 10085  ax-1ne0 10086  ax-1rid 10087  ax-rnegex 10088  ax-rrecex 10089  ax-cnre 10090  ax-pre-lttri 10091  ax-pre-lttrn 10092  ax-pre-ltadd 10093  ax-pre-mulgt0 10094  ax-pre-sup 10095 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1567  df-ex 1786  df-nf 1791  df-sb 1979  df-eu 2543  df-mo 2544  df-clab 2679  df-cleq 2685  df-clel 2688  df-nfc 2823  df-ne 2865  df-nel 2968  df-ral 2987  df-rex 2988  df-reu 2989  df-rmo 2990  df-rab 2991  df-v 3274  df-sbc 3510  df-csb 3608  df-dif 3651  df-un 3653  df-in 3655  df-ss 3662  df-pss 3664  df-nul 3992  df-if 4163  df-pw 4236  df-sn 4254  df-pr 4256  df-tp 4258  df-op 4260  df-uni 4513  df-iun 4598  df-br 4729  df-opab 4789  df-mpt 4806  df-tr 4829  df-id 5096  df-eprel 5101  df-po 5107  df-so 5108  df-fr 5145  df-we 5147  df-xp 5192  df-rel 5193  df-cnv 5194  df-co 5195  df-dm 5196  df-rn 5197  df-res 5198  df-ima 5199  df-pred 5761  df-ord 5807  df-on 5808  df-lim 5809  df-suc 5810  df-iota 5932  df-fun 5971  df-fn 5972  df-f 5973  df-f1 5974  df-fo 5975  df-f1o 5976  df-fv 5977  df-riota 6694  df-ov 6736  df-oprab 6737  df-mpt2 6738  df-om 7151  df-1st 7253  df-2nd 7254  df-wrecs 7495  df-recs 7556  df-rdg 7594  df-er 7830  df-en 8041  df-dom 8042  df-sdom 8043  df-sup 8432  df-inf 8433  df-pnf 10157  df-mnf 10158  df-xr 10159  df-ltxr 10160  df-le 10161  df-sub 10349  df-neg 10350  df-div 10766  df-nn 11102  df-n0 11374  df-z 11459  df-uz 11769  df-rp 11915  df-fz 12409  df-fl 12676  df-mod 12752  df-seq 12885  df-dvds 15072  df-0g 16193  df-mgm 17332  df-sgrp 17374  df-mnd 17385  df-mulg 17631  df-od 18037 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator