MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndodcongi Structured version   Visualization version   GIF version

Theorem mndodcongi 17878
Description: If two multipliers are congruent relative to the base point's order, the corresponding multiples are the same. For monoids, the reverse implication is false for elements with infinite order. For example, the powers of 2 mod 10 are 1,2,4,8,6,2,4,8,6,... so that the identity 1 never repeats, which is infinite order by our definition, yet other numbers like 6 appear many times in the sequence. (Contributed by Mario Carneiro, 23-Sep-2015.)
Hypotheses
Ref Expression
odcl.1 𝑋 = (Base‘𝐺)
odcl.2 𝑂 = (od‘𝐺)
odid.3 · = (.g𝐺)
odid.4 0 = (0g𝐺)
Assertion
Ref Expression
mndodcongi ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))

Proof of Theorem mndodcongi
StepHypRef Expression
1 odcl.1 . . . . . 6 𝑋 = (Base‘𝐺)
2 odcl.2 . . . . . 6 𝑂 = (od‘𝐺)
3 odid.3 . . . . . 6 · = (.g𝐺)
4 odid.4 . . . . . 6 0 = (0g𝐺)
51, 2, 3, 4mndodcong 17877 . . . . 5 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ (𝑀 · 𝐴) = (𝑁 · 𝐴)))
65biimpd 219 . . . 4 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0) ∧ (𝑂𝐴) ∈ ℕ) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
763expia 1264 . . 3 (((𝐺 ∈ Mnd ∧ 𝐴𝑋) ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
873impa 1256 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
9 nn0z 11345 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℤ)
10 nn0z 11345 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
11 zsubcl 11364 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁) ∈ ℤ)
129, 10, 11syl2an 494 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → (𝑀𝑁) ∈ ℤ)
13123ad2ant3 1082 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑀𝑁) ∈ ℤ)
14 0dvds 14921 . . . . 5 ((𝑀𝑁) ∈ ℤ → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
1513, 14syl 17 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) ↔ (𝑀𝑁) = 0))
16 nn0cn 11247 . . . . . . 7 (𝑀 ∈ ℕ0𝑀 ∈ ℂ)
17 nn0cn 11247 . . . . . . 7 (𝑁 ∈ ℕ0𝑁 ∈ ℂ)
18 subeq0 10252 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
1916, 17, 18syl2an 494 . . . . . 6 ((𝑀 ∈ ℕ0𝑁 ∈ ℕ0) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
20193ad2ant3 1082 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 ↔ 𝑀 = 𝑁))
21 oveq1 6612 . . . . 5 (𝑀 = 𝑁 → (𝑀 · 𝐴) = (𝑁 · 𝐴))
2220, 21syl6bi 243 . . . 4 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑀𝑁) = 0 → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
2315, 22sylbid 230 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
24 breq1 4621 . . . 4 ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) ↔ 0 ∥ (𝑀𝑁)))
2524imbi1d 331 . . 3 ((𝑂𝐴) = 0 → (((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)) ↔ (0 ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
2623, 25syl5ibrcom 237 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) = 0 → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴))))
271, 2odcl 17871 . . . 4 (𝐴𝑋 → (𝑂𝐴) ∈ ℕ0)
28273ad2ant2 1081 . . 3 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → (𝑂𝐴) ∈ ℕ0)
29 elnn0 11239 . . 3 ((𝑂𝐴) ∈ ℕ0 ↔ ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
3028, 29sylib 208 . 2 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∈ ℕ ∨ (𝑂𝐴) = 0))
318, 26, 30mpjaod 396 1 ((𝐺 ∈ Mnd ∧ 𝐴𝑋 ∧ (𝑀 ∈ ℕ0𝑁 ∈ ℕ0)) → ((𝑂𝐴) ∥ (𝑀𝑁) → (𝑀 · 𝐴) = (𝑁 · 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1992   class class class wbr 4618  cfv 5850  (class class class)co 6605  cc 9879  0cc0 9881  cmin 10211  cn 10965  0cn0 11237  cz 11322  cdvds 14902  Basecbs 15776  0gc0g 16016  Mndcmnd 17210  .gcmg 17456  odcod 17860
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903  ax-inf2 8483  ax-cnex 9937  ax-resscn 9938  ax-1cn 9939  ax-icn 9940  ax-addcl 9941  ax-addrcl 9942  ax-mulcl 9943  ax-mulrcl 9944  ax-mulcom 9945  ax-addass 9946  ax-mulass 9947  ax-distr 9948  ax-i2m1 9949  ax-1ne0 9950  ax-1rid 9951  ax-rnegex 9952  ax-rrecex 9953  ax-cnre 9954  ax-pre-lttri 9955  ax-pre-lttrn 9956  ax-pre-ltadd 9957  ax-pre-mulgt0 9958  ax-pre-sup 9959
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-nel 2900  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-tp 4158  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-tr 4718  df-eprel 4990  df-id 4994  df-po 5000  df-so 5001  df-fr 5038  df-we 5040  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-pred 5642  df-ord 5688  df-on 5689  df-lim 5690  df-suc 5691  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-riota 6566  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-om 7014  df-1st 7116  df-2nd 7117  df-wrecs 7353  df-recs 7414  df-rdg 7452  df-er 7688  df-en 7901  df-dom 7902  df-sdom 7903  df-sup 8293  df-inf 8294  df-pnf 10021  df-mnf 10022  df-xr 10023  df-ltxr 10024  df-le 10025  df-sub 10213  df-neg 10214  df-div 10630  df-nn 10966  df-n0 11238  df-z 11323  df-uz 11632  df-rp 11777  df-fz 12266  df-fl 12530  df-mod 12606  df-seq 12739  df-dvds 14903  df-0g 16018  df-mgm 17158  df-sgrp 17200  df-mnd 17211  df-mulg 17457  df-od 17864
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator