MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndpfo Structured version   Visualization version   GIF version

Theorem mndpfo 17922
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b 𝐵 = (Base‘𝐺)
mndpf.p = (+𝑓𝐺)
Assertion
Ref Expression
mndpfo (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)

Proof of Theorem mndpfo
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3 𝐵 = (Base‘𝐺)
2 mndpf.p . . 3 = (+𝑓𝐺)
31, 2mndplusf 17917 . 2 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)⟶𝐵)
4 simpr 485 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥𝐵)
5 eqid 2818 . . . . . . 7 (0g𝐺) = (0g𝐺)
61, 5mndidcl 17914 . . . . . 6 (𝐺 ∈ Mnd → (0g𝐺) ∈ 𝐵)
76adantr 481 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (0g𝐺) ∈ 𝐵)
8 eqid 2818 . . . . . . 7 (+g𝐺) = (+g𝐺)
91, 8, 5mndrid 17920 . . . . . 6 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → (𝑥(+g𝐺)(0g𝐺)) = 𝑥)
109eqcomd 2824 . . . . 5 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → 𝑥 = (𝑥(+g𝐺)(0g𝐺)))
11 rspceov 7192 . . . . 5 ((𝑥𝐵 ∧ (0g𝐺) ∈ 𝐵𝑥 = (𝑥(+g𝐺)(0g𝐺))) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
124, 7, 10, 11syl3anc 1363 . . . 4 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
131, 8, 2plusfval 17847 . . . . . 6 ((𝑦𝐵𝑧𝐵) → (𝑦 𝑧) = (𝑦(+g𝐺)𝑧))
1413eqeq2d 2829 . . . . 5 ((𝑦𝐵𝑧𝐵) → (𝑥 = (𝑦 𝑧) ↔ 𝑥 = (𝑦(+g𝐺)𝑧)))
15142rexbiia 3295 . . . 4 (∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧) ↔ ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦(+g𝐺)𝑧))
1612, 15sylibr 235 . . 3 ((𝐺 ∈ Mnd ∧ 𝑥𝐵) → ∃𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
1716ralrimiva 3179 . 2 (𝐺 ∈ Mnd → ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧))
18 foov 7311 . 2 ( :(𝐵 × 𝐵)–onto𝐵 ↔ ( :(𝐵 × 𝐵)⟶𝐵 ∧ ∀𝑥𝐵𝑦𝐵𝑧𝐵 𝑥 = (𝑦 𝑧)))
193, 17, 18sylanbrc 583 1 (𝐺 ∈ Mnd → :(𝐵 × 𝐵)–onto𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1528  wcel 2105  wral 3135  wrex 3136   × cxp 5546  wf 6344  ontowfo 6346  cfv 6348  (class class class)co 7145  Basecbs 16471  +gcplusg 16553  0gc0g 16701  +𝑓cplusf 17837  Mndcmnd 17899
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-fo 6354  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-1st 7678  df-2nd 7679  df-0g 16703  df-plusf 17839  df-mgm 17840  df-sgrp 17889  df-mnd 17900
This theorem is referenced by:  mndfo  17923  grpplusfo  18054
  Copyright terms: Public domain W3C validator