Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpluscn Structured version   Visualization version   GIF version

Theorem mndpluscn 29107
Description: A mapping that is both a homeomorphism and a monoid homomorphism preserves the "continuousness" of the operation. (Contributed by Thierry Arnoux, 25-Mar-2017.)
Hypotheses
Ref Expression
mndpluscn.f 𝐹 ∈ (𝐽Homeo𝐾)
mndpluscn.p + :(𝐵 × 𝐵)⟶𝐵
mndpluscn.t :(𝐶 × 𝐶)⟶𝐶
mndpluscn.j 𝐽 ∈ (TopOn‘𝐵)
mndpluscn.k 𝐾 ∈ (TopOn‘𝐶)
mndpluscn.h ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
mndpluscn.o + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
Assertion
Ref Expression
mndpluscn ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Distinct variable groups:   𝑦, ,𝑥   𝑦, +   𝑦,𝐹   𝑥, +   𝑥,𝐵,𝑦   𝑥,𝐹
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐽(𝑥,𝑦)   𝐾(𝑥,𝑦)

Proof of Theorem mndpluscn
Dummy variables 𝑎 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpluscn.t . . . 4 :(𝐶 × 𝐶)⟶𝐶
2 ffn 5843 . . . 4 ( :(𝐶 × 𝐶)⟶𝐶 Fn (𝐶 × 𝐶))
3 fnov 6541 . . . . 5 ( Fn (𝐶 × 𝐶) ↔ = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
43biimpi 204 . . . 4 ( Fn (𝐶 × 𝐶) → = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)))
51, 2, 4mp2b 10 . . 3 = (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏))
6 mndpluscn.f . . . . . . . . 9 𝐹 ∈ (𝐽Homeo𝐾)
7 mndpluscn.j . . . . . . . . . . 11 𝐽 ∈ (TopOn‘𝐵)
87toponunii 20454 . . . . . . . . . 10 𝐵 = 𝐽
9 mndpluscn.k . . . . . . . . . . 11 𝐾 ∈ (TopOn‘𝐶)
109toponunii 20454 . . . . . . . . . 10 𝐶 = 𝐾
118, 10hmeof1o 21284 . . . . . . . . 9 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹:𝐵1-1-onto𝐶)
126, 11ax-mp 5 . . . . . . . 8 𝐹:𝐵1-1-onto𝐶
13 f1ocnvdm 6316 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹𝑎) ∈ 𝐵)
1412, 13mpan 701 . . . . . . 7 (𝑎𝐶 → (𝐹𝑎) ∈ 𝐵)
15 f1ocnvdm 6316 . . . . . . . 8 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹𝑏) ∈ 𝐵)
1612, 15mpan 701 . . . . . . 7 (𝑏𝐶 → (𝐹𝑏) ∈ 𝐵)
1714, 16anim12i 587 . . . . . 6 ((𝑎𝐶𝑏𝐶) → ((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵))
18 mndpluscn.h . . . . . . 7 ((𝑥𝐵𝑦𝐵) → (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)))
1918rgen2a 2864 . . . . . 6 𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))
20 oveq1 6432 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝑥 + 𝑦) = ((𝐹𝑎) + 𝑦))
2120fveq2d 5990 . . . . . . . 8 (𝑥 = (𝐹𝑎) → (𝐹‘(𝑥 + 𝑦)) = (𝐹‘((𝐹𝑎) + 𝑦)))
22 fveq2 5986 . . . . . . . . 9 (𝑥 = (𝐹𝑎) → (𝐹𝑥) = (𝐹‘(𝐹𝑎)))
2322oveq1d 6440 . . . . . . . 8 (𝑥 = (𝐹𝑎) → ((𝐹𝑥) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)))
2421, 23eqeq12d 2529 . . . . . . 7 (𝑥 = (𝐹𝑎) → ((𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦))))
25 oveq2 6433 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → ((𝐹𝑎) + 𝑦) = ((𝐹𝑎) + (𝐹𝑏)))
2625fveq2d 5990 . . . . . . . 8 (𝑦 = (𝐹𝑏) → (𝐹‘((𝐹𝑎) + 𝑦)) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
27 fveq2 5986 . . . . . . . . 9 (𝑦 = (𝐹𝑏) → (𝐹𝑦) = (𝐹‘(𝐹𝑏)))
2827oveq2d 6441 . . . . . . . 8 (𝑦 = (𝐹𝑏) → ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
2926, 28eqeq12d 2529 . . . . . . 7 (𝑦 = (𝐹𝑏) → ((𝐹‘((𝐹𝑎) + 𝑦)) = ((𝐹‘(𝐹𝑎)) (𝐹𝑦)) ↔ (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏)))))
3024, 29rspc2va 3198 . . . . . 6 ((((𝐹𝑎) ∈ 𝐵 ∧ (𝐹𝑏) ∈ 𝐵) ∧ ∀𝑥𝐵𝑦𝐵 (𝐹‘(𝑥 + 𝑦)) = ((𝐹𝑥) (𝐹𝑦))) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
3117, 19, 30sylancl 692 . . . . 5 ((𝑎𝐶𝑏𝐶) → (𝐹‘((𝐹𝑎) + (𝐹𝑏))) = ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))))
32 f1ocnvfv2 6309 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑎𝐶) → (𝐹‘(𝐹𝑎)) = 𝑎)
3312, 32mpan 701 . . . . . 6 (𝑎𝐶 → (𝐹‘(𝐹𝑎)) = 𝑎)
34 f1ocnvfv2 6309 . . . . . . 7 ((𝐹:𝐵1-1-onto𝐶𝑏𝐶) → (𝐹‘(𝐹𝑏)) = 𝑏)
3512, 34mpan 701 . . . . . 6 (𝑏𝐶 → (𝐹‘(𝐹𝑏)) = 𝑏)
3633, 35oveqan12d 6444 . . . . 5 ((𝑎𝐶𝑏𝐶) → ((𝐹‘(𝐹𝑎)) (𝐹‘(𝐹𝑏))) = (𝑎 𝑏))
3731, 36eqtr2d 2549 . . . 4 ((𝑎𝐶𝑏𝐶) → (𝑎 𝑏) = (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
3837mpt2eq3ia 6493 . . 3 (𝑎𝐶, 𝑏𝐶 ↦ (𝑎 𝑏)) = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
395, 38eqtri 2536 . 2 = (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏))))
409a1i 11 . . . 4 (⊤ → 𝐾 ∈ (TopOn‘𝐶))
4140, 40cnmpt1st 21188 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑎) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
42 hmeocnvcn 21281 . . . . . . 7 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐾 Cn 𝐽))
436, 42mp1i 13 . . . . . 6 (⊤ → 𝐹 ∈ (𝐾 Cn 𝐽))
4440, 40, 41, 43cnmpt21f 21192 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑎)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
4540, 40cnmpt2nd 21189 . . . . . 6 (⊤ → (𝑎𝐶, 𝑏𝐶𝑏) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
4640, 40, 45, 43cnmpt21f 21192 . . . . 5 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹𝑏)) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
47 mndpluscn.o . . . . . 6 + ∈ ((𝐽 ×t 𝐽) Cn 𝐽)
4847a1i 11 . . . . 5 (⊤ → + ∈ ((𝐽 ×t 𝐽) Cn 𝐽))
4940, 40, 44, 46, 48cnmpt22f 21195 . . . 4 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ ((𝐹𝑎) + (𝐹𝑏))) ∈ ((𝐾 ×t 𝐾) Cn 𝐽))
50 hmeocn 21280 . . . . 5 (𝐹 ∈ (𝐽Homeo𝐾) → 𝐹 ∈ (𝐽 Cn 𝐾))
516, 50mp1i 13 . . . 4 (⊤ → 𝐹 ∈ (𝐽 Cn 𝐾))
5240, 40, 49, 51cnmpt21f 21192 . . 3 (⊤ → (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾))
5352trud 1483 . 2 (𝑎𝐶, 𝑏𝐶 ↦ (𝐹‘((𝐹𝑎) + (𝐹𝑏)))) ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
5439, 53eqeltri 2588 1 ∈ ((𝐾 ×t 𝐾) Cn 𝐾)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 382   = wceq 1474  wtru 1475  wcel 1938  wral 2800   × cxp 4930  ccnv 4931   Fn wfn 5684  wf 5685  1-1-ontowf1o 5688  cfv 5689  (class class class)co 6425  cmpt2 6427  TopOnctopon 20425   Cn ccn 20745   ×t ctx 21080  Homeochmeo 21273
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1700  ax-4 1713  ax-5 1793  ax-6 1838  ax-7 1885  ax-8 1940  ax-9 1947  ax-10 1966  ax-11 1971  ax-12 1983  ax-13 2137  ax-ext 2494  ax-sep 4607  ax-nul 4616  ax-pow 4668  ax-pr 4732  ax-un 6721
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1699  df-sb 1831  df-eu 2366  df-mo 2367  df-clab 2501  df-cleq 2507  df-clel 2510  df-nfc 2644  df-ne 2686  df-ral 2805  df-rex 2806  df-rab 2809  df-v 3079  df-sbc 3307  df-csb 3404  df-dif 3447  df-un 3449  df-in 3451  df-ss 3458  df-nul 3778  df-if 3940  df-pw 4013  df-sn 4029  df-pr 4031  df-op 4035  df-uni 4271  df-iun 4355  df-br 4482  df-opab 4542  df-mpt 4543  df-id 4847  df-xp 4938  df-rel 4939  df-cnv 4940  df-co 4941  df-dm 4942  df-rn 4943  df-res 4944  df-ima 4945  df-iota 5653  df-fun 5691  df-fn 5692  df-f 5693  df-f1 5694  df-fo 5695  df-f1o 5696  df-fv 5697  df-ov 6428  df-oprab 6429  df-mpt2 6430  df-1st 6932  df-2nd 6933  df-map 7620  df-topgen 15815  df-top 20428  df-bases 20429  df-topon 20430  df-cn 20748  df-tx 21082  df-hmeo 21275
This theorem is referenced by:  mhmhmeotmd  29108  xrge0pluscn  29121
  Copyright terms: Public domain W3C validator