Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mndpsuppfi Structured version   Visualization version   GIF version

Theorem mndpsuppfi 44417
Description: The support of a mapping of a scalar multiplication with a function of scalars is finite if the support of the function of scalars is finite. (Contributed by AV, 5-Apr-2019.)
Hypothesis
Ref Expression
mndpsuppfi.r 𝑅 = (Base‘𝑀)
Assertion
Ref Expression
mndpsuppfi (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)

Proof of Theorem mndpsuppfi
StepHypRef Expression
1 unfi 8779 . . 3 (((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
213ad2ant3 1131 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin)
3 mndpsuppfi.r . . . 4 𝑅 = (Base‘𝑀)
43mndpsuppss 44413 . . 3 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
543adant3 1128 . 2 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))))
6 ssfi 8732 . 2 ((((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀))) ∈ Fin ∧ ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ⊆ ((𝐴 supp (0g𝑀)) ∪ (𝐵 supp (0g𝑀)))) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
72, 5, 6syl2anc 586 1 (((𝑀 ∈ Mnd ∧ 𝑉𝑋) ∧ (𝐴 ∈ (𝑅m 𝑉) ∧ 𝐵 ∈ (𝑅m 𝑉)) ∧ ((𝐴 supp (0g𝑀)) ∈ Fin ∧ (𝐵 supp (0g𝑀)) ∈ Fin)) → ((𝐴f (+g𝑀)𝐵) supp (0g𝑀)) ∈ Fin)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1533  wcel 2110  cun 3933  wss 3935  cfv 6349  (class class class)co 7150  f cof 7401   supp csupp 7824  m cmap 8400  Fincfn 8503  Basecbs 16477  +gcplusg 16559  0gc0g 16707  Mndcmnd 17905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-oadd 8100  df-er 8283  df-map 8402  df-en 8504  df-fin 8507  df-0g 16709  df-mgm 17846  df-sgrp 17895  df-mnd 17906
This theorem is referenced by:  mndpfsupp  44418
  Copyright terms: Public domain W3C validator