Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mndvcl Structured version   Visualization version   GIF version

Theorem mndvcl 20399
 Description: Tuple-wise additive closure in monoids. (Contributed by Stefan O'Rear, 5-Sep-2015.)
Hypotheses
Ref Expression
mndvcl.b 𝐵 = (Base‘𝑀)
mndvcl.p + = (+g𝑀)
Assertion
Ref Expression
mndvcl ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + 𝑌) ∈ (𝐵𝑚 𝐼))

Proof of Theorem mndvcl
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndvcl.b . . . . . 6 𝐵 = (Base‘𝑀)
2 mndvcl.p . . . . . 6 + = (+g𝑀)
31, 2mndcl 17502 . . . . 5 ((𝑀 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥 + 𝑦) ∈ 𝐵)
433expb 1114 . . . 4 ((𝑀 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
543ad2antl1 1201 . . 3 (((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥 + 𝑦) ∈ 𝐵)
6 elmapi 8045 . . . 4 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝑋:𝐼𝐵)
763ad2ant2 1129 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑋:𝐼𝐵)
8 elmapi 8045 . . . 4 (𝑌 ∈ (𝐵𝑚 𝐼) → 𝑌:𝐼𝐵)
983ad2ant3 1130 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝑌:𝐼𝐵)
10 elmapex 8044 . . . . 5 (𝑋 ∈ (𝐵𝑚 𝐼) → (𝐵 ∈ V ∧ 𝐼 ∈ V))
1110simprd 482 . . . 4 (𝑋 ∈ (𝐵𝑚 𝐼) → 𝐼 ∈ V)
12113ad2ant2 1129 . . 3 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → 𝐼 ∈ V)
13 inidm 3965 . . 3 (𝐼𝐼) = 𝐼
145, 7, 9, 12, 12, 13off 7077 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + 𝑌):𝐼𝐵)
15 fvex 6362 . . . 4 (Base‘𝑀) ∈ V
161, 15eqeltri 2835 . . 3 𝐵 ∈ V
17 elmapg 8036 . . 3 ((𝐵 ∈ V ∧ 𝐼 ∈ V) → ((𝑋𝑓 + 𝑌) ∈ (𝐵𝑚 𝐼) ↔ (𝑋𝑓 + 𝑌):𝐼𝐵))
1816, 12, 17sylancr 698 . 2 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → ((𝑋𝑓 + 𝑌) ∈ (𝐵𝑚 𝐼) ↔ (𝑋𝑓 + 𝑌):𝐼𝐵))
1914, 18mpbird 247 1 ((𝑀 ∈ Mnd ∧ 𝑋 ∈ (𝐵𝑚 𝐼) ∧ 𝑌 ∈ (𝐵𝑚 𝐼)) → (𝑋𝑓 + 𝑌) ∈ (𝐵𝑚 𝐼))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   ∧ w3a 1072   = wceq 1632   ∈ wcel 2139  Vcvv 3340  ⟶wf 6045  ‘cfv 6049  (class class class)co 6813   ∘𝑓 cof 7060   ↑𝑚 cmap 8023  Basecbs 16059  +gcplusg 16143  Mndcmnd 17495 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-1st 7333  df-2nd 7334  df-map 8025  df-mgm 17443  df-sgrp 17485  df-mnd 17496 This theorem is referenced by:  ringvcl  20406  mamudi  20411  mamudir  20412
 Copyright terms: Public domain W3C validator