MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfaddpnf Structured version   Visualization version   GIF version

Theorem mnfaddpnf 12627
Description: Addition of negative and positive infinity. This is often taken to be a "null" value or out of the domain, but we define it (somewhat arbitrarily) to be zero so that the resulting function is total, which simplifies proofs. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
mnfaddpnf (-∞ +𝑒 +∞) = 0

Proof of Theorem mnfaddpnf
StepHypRef Expression
1 mnfxr 10701 . . 3 -∞ ∈ ℝ*
2 pnfxr 10698 . . 3 +∞ ∈ ℝ*
3 xaddval 12619 . . 3 ((-∞ ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))))
41, 2, 3mp2an 690 . 2 (-∞ +𝑒 +∞) = if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
5 mnfnepnf 10700 . . . 4 -∞ ≠ +∞
6 ifnefalse 4482 . . . 4 (-∞ ≠ +∞ → if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))))
75, 6ax-mp 5 . . 3 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))
8 eqid 2824 . . . . 5 -∞ = -∞
98iftruei 4477 . . . 4 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = if(+∞ = +∞, 0, -∞)
10 eqid 2824 . . . . 5 +∞ = +∞
1110iftruei 4477 . . . 4 if(+∞ = +∞, 0, -∞) = 0
129, 11eqtri 2847 . . 3 if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞)))) = 0
137, 12eqtri 2847 . 2 if(-∞ = +∞, if(+∞ = -∞, 0, +∞), if(-∞ = -∞, if(+∞ = +∞, 0, -∞), if(+∞ = +∞, +∞, if(+∞ = -∞, -∞, (-∞ + +∞))))) = 0
144, 13eqtri 2847 1 (-∞ +𝑒 +∞) = 0
Colors of variables: wff setvar class
Syntax hints:   = wceq 1536  wcel 2113  wne 3019  ifcif 4470  (class class class)co 7159  0cc0 10540   + caddc 10543  +∞cpnf 10675  -∞cmnf 10676  *cxr 10677   +𝑒 cxad 12508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-mulcl 10602  ax-i2m1 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-ral 3146  df-rex 3147  df-rab 3150  df-v 3499  df-sbc 3776  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-op 4577  df-uni 4842  df-br 5070  df-opab 5132  df-id 5463  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-iota 6317  df-fun 6360  df-fv 6366  df-ov 7162  df-oprab 7163  df-mpo 7164  df-pnf 10680  df-mnf 10681  df-xr 10682  df-xadd 12511
This theorem is referenced by:  xnegid  12634  xaddcom  12636  xnegdi  12644  xsubge0  12657  xadddilem  12690  xrsnsgrp  20584
  Copyright terms: Public domain W3C validator