MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnei Structured version   Visualization version   GIF version

Theorem mnfnei 21073
Description: A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
mnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2651 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2651 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2651 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 21065 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2722 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 20817 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴))
7 elun 3786 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 3786 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 vex 3234 . . . . . . . . . 10 𝑢 ∈ V
10 eqid 2651 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
1110elrnmpt 5404 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
129, 11ax-mp 5 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
13 nltmnf 12001 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
14 pnfxr 10130 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
15 elioc1 12255 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
1614, 15mpan2 707 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
17 simp2 1082 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞) → 𝑦 < -∞)
1816, 17syl6bi 243 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) → 𝑦 < -∞))
1913, 18mtod 189 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ -∞ ∈ (𝑦(,]+∞))
20 eleq2 2719 . . . . . . . . . . . . . 14 (𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (𝑦(,]+∞)))
2120notbid 307 . . . . . . . . . . . . 13 (𝑢 = (𝑦(,]+∞) → (¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ (𝑦(,]+∞)))
2219, 21syl5ibrcom 237 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢))
2322rexlimiv 3056 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢)
2423pm2.21d 118 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2524adantrd 483 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2612, 25sylbi 207 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
27 eqid 2651 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
2827elrnmpt 5404 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
299, 28ax-mp 5 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
30 mnfxr 10134 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
3130a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ ℝ*)
32 0xr 10124 . . . . . . . . . . . . . 14 0 ∈ ℝ*
33 simprl 809 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑦 ∈ ℝ*)
34 ifcl 4163 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3532, 33, 34sylancr 696 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3614a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → +∞ ∈ ℝ*)
37 mnflt0 11997 . . . . . . . . . . . . . 14 -∞ < 0
38 simpll 805 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ 𝑢)
39 simprr 811 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢 = (-∞[,)𝑦))
4038, 39eleqtrd 2732 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ (-∞[,)𝑦))
41 elico1 12256 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4230, 33, 41sylancr 696 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4340, 42mpbid 222 . . . . . . . . . . . . . . 15 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦))
4443simp3d 1095 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < 𝑦)
45 breq2 4689 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 0 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
46 breq2 4689 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 𝑦 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
4745, 46ifboth 4157 . . . . . . . . . . . . . 14 ((-∞ < 0 ∧ -∞ < 𝑦) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4837, 44, 47sylancr 696 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4932a1i 11 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 ∈ ℝ*)
50 xrmin1 12046 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
5132, 33, 50sylancr 696 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
52 0re 10078 . . . . . . . . . . . . . . 15 0 ∈ ℝ
53 ltpnf 11992 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → 0 < +∞)
5452, 53mp1i 13 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 < +∞)
5535, 49, 36, 51, 54xrlelttrd 12029 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) < +∞)
56 xrre2 12039 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) < +∞)) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
5731, 35, 36, 48, 55, 56syl32anc 1374 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
58 xrmin2 12047 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
5932, 33, 58sylancr 696 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
60 df-ico 12219 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
61 xrltletr 12026 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → 𝑥 < 𝑦))
6260, 60, 61ixxss2 12232 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
6333, 59, 62syl2anc 694 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
64 simplr 807 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢𝐴)
6539, 64eqsstr3d 3673 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)𝑦) ⊆ 𝐴)
6663, 65sstrd 3646 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴)
67 oveq2 6698 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞[,)𝑥) = (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)))
6867sseq1d 3665 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → ((-∞[,)𝑥) ⊆ 𝐴 ↔ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴))
6968rspcev 3340 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ ∧ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7057, 66, 69syl2anc 694 . . . . . . . . . . 11 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7170rexlimdvaa 3061 . . . . . . . . . 10 ((-∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7271com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7329, 72sylbi 207 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7426, 73jaoi 393 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
758, 74sylbi 207 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
76 mnfnre 10120 . . . . . . . . . 10 -∞ ∉ ℝ
7776neli 2928 . . . . . . . . 9 ¬ -∞ ∈ ℝ
78 elssuni 4499 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
79 unirnioo 12311 . . . . . . . . . . 11 ℝ = ran (,)
8078, 79syl6sseqr 3685 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
8180sseld 3635 . . . . . . . . 9 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → -∞ ∈ ℝ))
8277, 81mtoi 190 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢)
8382pm2.21d 118 . . . . . . 7 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8483adantrd 483 . . . . . 6 (𝑢 ∈ ran (,) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8575, 84jaoi 393 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
867, 85sylbi 207 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8786rexlimiv 3056 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
886, 87syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
895, 88sylanb 488 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  w3a 1054   = wceq 1523  wcel 2030  wrex 2942  Vcvv 3231  cun 3605  wss 3607  ifcif 4119   cuni 4468   class class class wbr 4685  cmpt 4762  ran crn 5144  cfv 5926  (class class class)co 6690  cr 9973  0cc0 9974  +∞cpnf 10109  -∞cmnf 10110  *cxr 10111   < clt 10112  cle 10113  (,)cioo 12213  (,]cioc 12214  [,)cico 12215  topGenctg 16145  ordTopcordt 16206
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-oadd 7609  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fi 8358  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-ioo 12217  df-ioc 12218  df-ico 12219  df-icc 12220  df-topgen 16151  df-ordt 16208  df-ps 17247  df-tsr 17248  df-top 20747  df-bases 20798
This theorem is referenced by:  xlimmnfvlem2  40377
  Copyright terms: Public domain W3C validator