MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mnfnei Structured version   Visualization version   GIF version

Theorem mnfnei 21821
Description: A neighborhood of -∞ contains an unbounded interval based at a real number. (Contributed by Mario Carneiro, 3-Sep-2015.)
Assertion
Ref Expression
mnfnei ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Distinct variable group:   𝑥,𝐴

Proof of Theorem mnfnei
Dummy variables 𝑎 𝑏 𝑐 𝑢 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2819 . . . 4 ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
2 eqid 2819 . . . 4 ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
3 eqid 2819 . . . 4 ran (,) = ran (,)
41, 2, 3leordtval 21813 . . 3 (ordTop‘ ≤ ) = (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)))
54eleq2i 2902 . 2 (𝐴 ∈ (ordTop‘ ≤ ) ↔ 𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))))
6 tg2 21565 . . 3 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴))
7 elun 4123 . . . . 5 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) ↔ (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)))
8 elun 4123 . . . . . . 7 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ↔ (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))))
9 eqid 2819 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) = (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞))
109elrnmpt 5821 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞)))
1110elv 3498 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞))
12 nltmnf 12516 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → ¬ 𝑦 < -∞)
13 pnfxr 10687 . . . . . . . . . . . . . . . 16 +∞ ∈ ℝ*
14 elioc1 12772 . . . . . . . . . . . . . . . 16 ((𝑦 ∈ ℝ* ∧ +∞ ∈ ℝ*) → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
1513, 14mpan2 689 . . . . . . . . . . . . . . 15 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) ↔ (-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞)))
16 simp2 1132 . . . . . . . . . . . . . . 15 ((-∞ ∈ ℝ*𝑦 < -∞ ∧ -∞ ≤ +∞) → 𝑦 < -∞)
1715, 16syl6bi 255 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ* → (-∞ ∈ (𝑦(,]+∞) → 𝑦 < -∞))
1812, 17mtod 200 . . . . . . . . . . . . 13 (𝑦 ∈ ℝ* → ¬ -∞ ∈ (𝑦(,]+∞))
19 eleq2 2899 . . . . . . . . . . . . . 14 (𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 ↔ -∞ ∈ (𝑦(,]+∞)))
2019notbid 320 . . . . . . . . . . . . 13 (𝑢 = (𝑦(,]+∞) → (¬ -∞ ∈ 𝑢 ↔ ¬ -∞ ∈ (𝑦(,]+∞)))
2118, 20syl5ibrcom 249 . . . . . . . . . . . 12 (𝑦 ∈ ℝ* → (𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢))
2221rexlimiv 3278 . . . . . . . . . . 11 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ¬ -∞ ∈ 𝑢)
2322pm2.21d 121 . . . . . . . . . 10 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2423adantrd 494 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (𝑦(,]+∞) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
2511, 24sylbi 219 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
26 eqid 2819 . . . . . . . . . . 11 (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) = (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))
2726elrnmpt 5821 . . . . . . . . . 10 (𝑢 ∈ V → (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦)))
2827elv 3498 . . . . . . . . 9 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) ↔ ∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦))
29 mnfxr 10690 . . . . . . . . . . . . . 14 -∞ ∈ ℝ*
3029a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ ℝ*)
31 0xr 10680 . . . . . . . . . . . . . 14 0 ∈ ℝ*
32 simprl 769 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑦 ∈ ℝ*)
33 ifcl 4509 . . . . . . . . . . . . . 14 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3431, 32, 33sylancr 589 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*)
3513a1i 11 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → +∞ ∈ ℝ*)
36 mnflt0 12512 . . . . . . . . . . . . . 14 -∞ < 0
37 simpll 765 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ 𝑢)
38 simprr 771 . . . . . . . . . . . . . . . . 17 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢 = (-∞[,)𝑦))
3937, 38eleqtrd 2913 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ ∈ (-∞[,)𝑦))
40 elico1 12773 . . . . . . . . . . . . . . . . 17 ((-∞ ∈ ℝ*𝑦 ∈ ℝ*) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4129, 32, 40sylancr 589 . . . . . . . . . . . . . . . 16 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ (-∞[,)𝑦) ↔ (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦)))
4239, 41mpbid 234 . . . . . . . . . . . . . . 15 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞ ∈ ℝ* ∧ -∞ ≤ -∞ ∧ -∞ < 𝑦))
4342simp3d 1139 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < 𝑦)
44 breq2 5061 . . . . . . . . . . . . . . 15 (0 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 0 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
45 breq2 5061 . . . . . . . . . . . . . . 15 (𝑦 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞ < 𝑦 ↔ -∞ < if(0 ≤ 𝑦, 0, 𝑦)))
4644, 45ifboth 4503 . . . . . . . . . . . . . 14 ((-∞ < 0 ∧ -∞ < 𝑦) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4736, 43, 46sylancr 589 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → -∞ < if(0 ≤ 𝑦, 0, 𝑦))
4831a1i 11 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 ∈ ℝ*)
49 xrmin1 12562 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
5031, 32, 49sylancr 589 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 0)
51 0re 10635 . . . . . . . . . . . . . . 15 0 ∈ ℝ
52 ltpnf 12507 . . . . . . . . . . . . . . 15 (0 ∈ ℝ → 0 < +∞)
5351, 52mp1i 13 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 0 < +∞)
5434, 48, 35, 50, 53xrlelttrd 12545 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) < +∞)
55 xrre2 12555 . . . . . . . . . . . . 13 (((-∞ ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ* ∧ +∞ ∈ ℝ*) ∧ (-∞ < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) < +∞)) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
5630, 34, 35, 47, 54, 55syl32anc 1373 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ)
57 xrmin2 12563 . . . . . . . . . . . . . . 15 ((0 ∈ ℝ*𝑦 ∈ ℝ*) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
5831, 32, 57sylancr 589 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦)
59 df-ico 12736 . . . . . . . . . . . . . . 15 [,) = (𝑎 ∈ ℝ*, 𝑏 ∈ ℝ* ↦ {𝑐 ∈ ℝ* ∣ (𝑎𝑐𝑐 < 𝑏)})
60 xrltletr 12542 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ*𝑦 ∈ ℝ*) → ((𝑥 < if(0 ≤ 𝑦, 0, 𝑦) ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → 𝑥 < 𝑦))
6159, 59, 60ixxss2 12749 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ* ∧ if(0 ≤ 𝑦, 0, 𝑦) ≤ 𝑦) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
6232, 58, 61syl2anc 586 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ (-∞[,)𝑦))
63 simplr 767 . . . . . . . . . . . . . 14 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → 𝑢𝐴)
6438, 63eqsstrrd 4004 . . . . . . . . . . . . 13 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)𝑦) ⊆ 𝐴)
6562, 64sstrd 3975 . . . . . . . . . . . 12 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴)
66 oveq2 7156 . . . . . . . . . . . . . 14 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → (-∞[,)𝑥) = (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)))
6766sseq1d 3996 . . . . . . . . . . . . 13 (𝑥 = if(0 ≤ 𝑦, 0, 𝑦) → ((-∞[,)𝑥) ⊆ 𝐴 ↔ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴))
6867rspcev 3621 . . . . . . . . . . . 12 ((if(0 ≤ 𝑦, 0, 𝑦) ∈ ℝ ∧ (-∞[,)if(0 ≤ 𝑦, 0, 𝑦)) ⊆ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
6956, 65, 68syl2anc 586 . . . . . . . . . . 11 (((-∞ ∈ 𝑢𝑢𝐴) ∧ (𝑦 ∈ ℝ*𝑢 = (-∞[,)𝑦))) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
7069rexlimdvaa 3283 . . . . . . . . . 10 ((-∞ ∈ 𝑢𝑢𝐴) → (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7170com12 32 . . . . . . . . 9 (∃𝑦 ∈ ℝ* 𝑢 = (-∞[,)𝑦) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7228, 71sylbi 219 . . . . . . . 8 (𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
7325, 72jaoi 853 . . . . . . 7 ((𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∨ 𝑢 ∈ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
748, 73sylbi 219 . . . . . 6 (𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
75 mnfnre 10676 . . . . . . . . . 10 -∞ ∉ ℝ
7675neli 3123 . . . . . . . . 9 ¬ -∞ ∈ ℝ
77 elssuni 4859 . . . . . . . . . . 11 (𝑢 ∈ ran (,) → 𝑢 ran (,))
78 unirnioo 12829 . . . . . . . . . . 11 ℝ = ran (,)
7977, 78sseqtrrdi 4016 . . . . . . . . . 10 (𝑢 ∈ ran (,) → 𝑢 ⊆ ℝ)
8079sseld 3964 . . . . . . . . 9 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → -∞ ∈ ℝ))
8176, 80mtoi 201 . . . . . . . 8 (𝑢 ∈ ran (,) → ¬ -∞ ∈ 𝑢)
8281pm2.21d 121 . . . . . . 7 (𝑢 ∈ ran (,) → (-∞ ∈ 𝑢 → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8382adantrd 494 . . . . . 6 (𝑢 ∈ ran (,) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8474, 83jaoi 853 . . . . 5 ((𝑢 ∈ (ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∨ 𝑢 ∈ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
857, 84sylbi 219 . . . 4 (𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,)) → ((-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴))
8685rexlimiv 3278 . . 3 (∃𝑢 ∈ ((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))(-∞ ∈ 𝑢𝑢𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
876, 86syl 17 . 2 ((𝐴 ∈ (topGen‘((ran (𝑦 ∈ ℝ* ↦ (𝑦(,]+∞)) ∪ ran (𝑦 ∈ ℝ* ↦ (-∞[,)𝑦))) ∪ ran (,))) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
885, 87sylanb 583 1 ((𝐴 ∈ (ordTop‘ ≤ ) ∧ -∞ ∈ 𝐴) → ∃𝑥 ∈ ℝ (-∞[,)𝑥) ⊆ 𝐴)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1082   = wceq 1531  wcel 2108  wrex 3137  Vcvv 3493  cun 3932  wss 3934  ifcif 4465   cuni 4830   class class class wbr 5057  cmpt 5137  ran crn 5549  cfv 6348  (class class class)co 7148  cr 10528  0cc0 10529  +∞cpnf 10664  -∞cmnf 10665  *cxr 10666   < clt 10667  cle 10668  (,)cioo 12730  (,]cioc 12731  [,)cico 12732  topGenctg 16703  ordTopcordt 16764
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1905  ax-6 1964  ax-7 2009  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2154  ax-12 2170  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1083  df-3an 1084  df-tru 1534  df-ex 1775  df-nf 1779  df-sb 2064  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-fi 8867  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-ioo 12734  df-ioc 12735  df-ico 12736  df-icc 12737  df-topgen 16709  df-ordt 16766  df-ps 17802  df-tsr 17803  df-top 21494  df-bases 21546
This theorem is referenced by:  xlimmnfvlem2  42103
  Copyright terms: Public domain W3C validator