![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mo2 | Structured version Visualization version GIF version |
Description: Alternate definition of "at most one." (Contributed by NM, 8-Mar-1995.) Restrict dummy variable z. (Revised by Wolf Lammen, 28-May-2019.) |
Ref | Expression |
---|---|
mo2.1 | ⊢ Ⅎ𝑦𝜑 |
Ref | Expression |
---|---|
mo2 | ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mo2v 2505 | . 2 ⊢ (∃*𝑥𝜑 ↔ ∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧)) | |
2 | mo2.1 | . . . . 5 ⊢ Ⅎ𝑦𝜑 | |
3 | nfv 1883 | . . . . 5 ⊢ Ⅎ𝑦 𝑥 = 𝑧 | |
4 | 2, 3 | nfim 1865 | . . . 4 ⊢ Ⅎ𝑦(𝜑 → 𝑥 = 𝑧) |
5 | 4 | nfal 2191 | . . 3 ⊢ Ⅎ𝑦∀𝑥(𝜑 → 𝑥 = 𝑧) |
6 | nfv 1883 | . . 3 ⊢ Ⅎ𝑧∀𝑥(𝜑 → 𝑥 = 𝑦) | |
7 | equequ2 1999 | . . . . 5 ⊢ (𝑧 = 𝑦 → (𝑥 = 𝑧 ↔ 𝑥 = 𝑦)) | |
8 | 7 | imbi2d 329 | . . . 4 ⊢ (𝑧 = 𝑦 → ((𝜑 → 𝑥 = 𝑧) ↔ (𝜑 → 𝑥 = 𝑦))) |
9 | 8 | albidv 1889 | . . 3 ⊢ (𝑧 = 𝑦 → (∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∀𝑥(𝜑 → 𝑥 = 𝑦))) |
10 | 5, 6, 9 | cbvex 2308 | . 2 ⊢ (∃𝑧∀𝑥(𝜑 → 𝑥 = 𝑧) ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
11 | 1, 10 | bitri 264 | 1 ⊢ (∃*𝑥𝜑 ↔ ∃𝑦∀𝑥(𝜑 → 𝑥 = 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1521 ∃wex 1744 Ⅎwnf 1748 ∃*wmo 2499 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1745 df-nf 1750 df-eu 2502 df-mo 2503 |
This theorem is referenced by: mo3 2536 mo 2537 rmo2 3559 nmo 29453 bj-eu3f 32954 bj-mo3OLD 32957 dffun3f 42754 |
Copyright terms: Public domain | W3C validator |