MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mobid Structured version   Visualization version   GIF version

Theorem mobid 2487
Description: Formula-building rule for "at most one" quantifier (deduction rule). (Contributed by NM, 8-Mar-1995.)
Hypotheses
Ref Expression
mobid.1 𝑥𝜑
mobid.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
mobid (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))

Proof of Theorem mobid
StepHypRef Expression
1 mobid.1 . . . 4 𝑥𝜑
2 mobid.2 . . . 4 (𝜑 → (𝜓𝜒))
31, 2exbid 2089 . . 3 (𝜑 → (∃𝑥𝜓 ↔ ∃𝑥𝜒))
41, 2eubid 2486 . . 3 (𝜑 → (∃!𝑥𝜓 ↔ ∃!𝑥𝜒))
53, 4imbi12d 334 . 2 (𝜑 → ((∃𝑥𝜓 → ∃!𝑥𝜓) ↔ (∃𝑥𝜒 → ∃!𝑥𝜒)))
6 df-mo 2473 . 2 (∃*𝑥𝜓 ↔ (∃𝑥𝜓 → ∃!𝑥𝜓))
7 df-mo 2473 . 2 (∃*𝑥𝜒 ↔ (∃𝑥𝜒 → ∃!𝑥𝜒))
85, 6, 73bitr4g 303 1 (𝜑 → (∃*𝑥𝜓 ↔ ∃*𝑥𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wex 1702  wnf 1706  ∃!weu 2468  ∃*wmo 2469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-12 2045
This theorem depends on definitions:  df-bi 197  df-ex 1703  df-nf 1708  df-eu 2472  df-mo 2473
This theorem is referenced by:  mobidv  2489  moanim  2527  rmobida  3124  rmoeq1f  3132  funcnvmptOLD  29441  funcnvmpt  29442
  Copyright terms: Public domain W3C validator