Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mod0mul Structured version   Visualization version   GIF version

Theorem mod0mul 44507
Description: If an integer is 0 modulo a positive integer, this integer must be the product of another integer and the modulus. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
mod0mul ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑁

Proof of Theorem mod0mul
StepHypRef Expression
1 zre 11973 . . 3 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
2 nnrp 12388 . . 3 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 mod0 13232 . . 3 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → ((𝐴 mod 𝑁) = 0 ↔ (𝐴 / 𝑁) ∈ ℤ))
41, 2, 3syl2an 595 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 ↔ (𝐴 / 𝑁) ∈ ℤ))
5 simpr 485 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → (𝐴 / 𝑁) ∈ ℤ)
6 oveq1 7152 . . . . . 6 (𝑥 = (𝐴 / 𝑁) → (𝑥 · 𝑁) = ((𝐴 / 𝑁) · 𝑁))
76eqeq2d 2829 . . . . 5 (𝑥 = (𝐴 / 𝑁) → (𝐴 = (𝑥 · 𝑁) ↔ 𝐴 = ((𝐴 / 𝑁) · 𝑁)))
87adantl 482 . . . 4 ((((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) ∧ 𝑥 = (𝐴 / 𝑁)) → (𝐴 = (𝑥 · 𝑁) ↔ 𝐴 = ((𝐴 / 𝑁) · 𝑁)))
9 zcn 11974 . . . . . . . 8 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
109adantr 481 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℂ)
11 nncn 11634 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
1211adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
13 nnne0 11659 . . . . . . . 8 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
1413adantl 482 . . . . . . 7 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
1510, 12, 14divcan1d 11405 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑁) · 𝑁) = 𝐴)
1615adantr 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → ((𝐴 / 𝑁) · 𝑁) = 𝐴)
1716eqcomd 2824 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → 𝐴 = ((𝐴 / 𝑁) · 𝑁))
185, 8, 17rspcedvd 3623 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 / 𝑁) ∈ ℤ) → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁))
1918ex 413 . 2 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 / 𝑁) ∈ ℤ → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
204, 19sylbid 241 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) = 0 → ∃𝑥 ∈ ℤ 𝐴 = (𝑥 · 𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wne 3013  wrex 3136  (class class class)co 7145  cc 10523  cr 10524  0cc0 10525   · cmul 10530   / cdiv 11285  cn 11626  cz 11969  +crp 12377   mod cmo 13225
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601  ax-pre-mulgt0 10602  ax-pre-sup 10603
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rmo 3143  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7103  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-sup 8894  df-inf 8895  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-le 10669  df-sub 10860  df-neg 10861  df-div 11286  df-nn 11627  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-fl 13150  df-mod 13226
This theorem is referenced by:  m1modmmod  44509
  Copyright terms: Public domain W3C validator