MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mod2eq1n2dvds Structured version   Visualization version   GIF version

Theorem mod2eq1n2dvds 15052
Description: An integer is 1 modulo 2 iff it is odd (i.e. not divisible by 2), see example 3 in [ApostolNT] p. 107. (Contributed by AV, 24-May-2020.) (Proof shortened by AV, 5-Jul-2020.)
Assertion
Ref Expression
mod2eq1n2dvds (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))

Proof of Theorem mod2eq1n2dvds
Dummy variable 𝑛 is distinct from all other variables.
StepHypRef Expression
1 zeo 11448 . . . 4 (𝑁 ∈ ℤ → ((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ))
2 zre 11366 . . . . . . . . 9 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3 2rp 11822 . . . . . . . . 9 2 ∈ ℝ+
4 mod0 12658 . . . . . . . . 9 ((𝑁 ∈ ℝ ∧ 2 ∈ ℝ+) → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
52, 3, 4sylancl 693 . . . . . . . 8 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 0 ↔ (𝑁 / 2) ∈ ℤ))
65biimpar 502 . . . . . . 7 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → (𝑁 mod 2) = 0)
7 eqeq1 2624 . . . . . . . 8 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 ↔ 0 = 1))
8 0ne1 11073 . . . . . . . . 9 0 ≠ 1
9 eqneqall 2802 . . . . . . . . 9 (0 = 1 → (0 ≠ 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
108, 9mpi 20 . . . . . . . 8 (0 = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
117, 10syl6bi 243 . . . . . . 7 ((𝑁 mod 2) = 0 → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
126, 11syl 17 . . . . . 6 ((𝑁 ∈ ℤ ∧ (𝑁 / 2) ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
1312expcom 451 . . . . 5 ((𝑁 / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
14 peano2zm 11405 . . . . . . . . 9 (((𝑁 + 1) / 2) ∈ ℤ → (((𝑁 + 1) / 2) − 1) ∈ ℤ)
15 zcn 11367 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → 𝑁 ∈ ℂ)
16 xp1d2m1eqxm1d2 11271 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1715, 16syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (((𝑁 + 1) / 2) − 1) = ((𝑁 − 1) / 2))
1817eleq1d 2684 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ ↔ ((𝑁 − 1) / 2) ∈ ℤ))
1918biimpd 219 . . . . . . . . 9 (𝑁 ∈ ℤ → ((((𝑁 + 1) / 2) − 1) ∈ ℤ → ((𝑁 − 1) / 2) ∈ ℤ))
2014, 19mpan9 486 . . . . . . . 8 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 − 1) / 2) ∈ ℤ)
21 oveq2 6643 . . . . . . . . . . 11 (𝑛 = ((𝑁 − 1) / 2) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2221adantl 482 . . . . . . . . . 10 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → (2 · 𝑛) = (2 · ((𝑁 − 1) / 2)))
2322oveq1d 6650 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = ((2 · ((𝑁 − 1) / 2)) + 1))
24 peano2zm 11405 . . . . . . . . . . . . . 14 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
2524zcnd 11468 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℂ)
26 2cnd 11078 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ∈ ℂ)
27 2ne0 11098 . . . . . . . . . . . . . 14 2 ≠ 0
2827a1i 11 . . . . . . . . . . . . 13 (𝑁 ∈ ℤ → 2 ≠ 0)
2925, 26, 28divcan2d 10788 . . . . . . . . . . . 12 (𝑁 ∈ ℤ → (2 · ((𝑁 − 1) / 2)) = (𝑁 − 1))
3029oveq1d 6650 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = ((𝑁 − 1) + 1))
31 npcan1 10440 . . . . . . . . . . . 12 (𝑁 ∈ ℂ → ((𝑁 − 1) + 1) = 𝑁)
3215, 31syl 17 . . . . . . . . . . 11 (𝑁 ∈ ℤ → ((𝑁 − 1) + 1) = 𝑁)
3330, 32eqtrd 2654 . . . . . . . . . 10 (𝑁 ∈ ℤ → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3433ad2antlr 762 . . . . . . . . 9 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · ((𝑁 − 1) / 2)) + 1) = 𝑁)
3523, 34eqtrd 2654 . . . . . . . 8 (((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑛 = ((𝑁 − 1) / 2)) → ((2 · 𝑛) + 1) = 𝑁)
3620, 35rspcedeq1vd 3313 . . . . . . 7 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)
3736a1d 25 . . . . . 6 ((((𝑁 + 1) / 2) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
3837ex 450 . . . . 5 (((𝑁 + 1) / 2) ∈ ℤ → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
3913, 38jaoi 394 . . . 4 (((𝑁 / 2) ∈ ℤ ∨ ((𝑁 + 1) / 2) ∈ ℤ) → (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁)))
401, 39mpcom 38 . . 3 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 → ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
41 oveq1 6642 . . . . . . 7 (𝑁 = ((2 · 𝑛) + 1) → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
4241eqcoms 2628 . . . . . 6 (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = (((2 · 𝑛) + 1) mod 2))
43 2cnd 11078 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 2 ∈ ℂ)
44 zcn 11367 . . . . . . . . . . . . . 14 (𝑛 ∈ ℤ → 𝑛 ∈ ℂ)
4543, 44mulcomd 10046 . . . . . . . . . . . . 13 (𝑛 ∈ ℤ → (2 · 𝑛) = (𝑛 · 2))
4645oveq1d 6650 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = ((𝑛 · 2) mod 2))
47 mulmod0 12659 . . . . . . . . . . . . 13 ((𝑛 ∈ ℤ ∧ 2 ∈ ℝ+) → ((𝑛 · 2) mod 2) = 0)
483, 47mpan2 706 . . . . . . . . . . . 12 (𝑛 ∈ ℤ → ((𝑛 · 2) mod 2) = 0)
4946, 48eqtrd 2654 . . . . . . . . . . 11 (𝑛 ∈ ℤ → ((2 · 𝑛) mod 2) = 0)
5049oveq1d 6650 . . . . . . . . . 10 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = (0 + 1))
51 0p1e1 11117 . . . . . . . . . 10 (0 + 1) = 1
5250, 51syl6eq 2670 . . . . . . . . 9 (𝑛 ∈ ℤ → (((2 · 𝑛) mod 2) + 1) = 1)
5352oveq1d 6650 . . . . . . . 8 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (1 mod 2))
54 2z 11394 . . . . . . . . . . . 12 2 ∈ ℤ
5554a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 2 ∈ ℤ)
56 id 22 . . . . . . . . . . 11 (𝑛 ∈ ℤ → 𝑛 ∈ ℤ)
5755, 56zmulcld 11473 . . . . . . . . . 10 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℤ)
5857zred 11467 . . . . . . . . 9 (𝑛 ∈ ℤ → (2 · 𝑛) ∈ ℝ)
59 1red 10040 . . . . . . . . 9 (𝑛 ∈ ℤ → 1 ∈ ℝ)
603a1i 11 . . . . . . . . 9 (𝑛 ∈ ℤ → 2 ∈ ℝ+)
61 modaddmod 12692 . . . . . . . . 9 (((2 · 𝑛) ∈ ℝ ∧ 1 ∈ ℝ ∧ 2 ∈ ℝ+) → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
6258, 59, 60, 61syl3anc 1324 . . . . . . . 8 (𝑛 ∈ ℤ → ((((2 · 𝑛) mod 2) + 1) mod 2) = (((2 · 𝑛) + 1) mod 2))
63 2re 11075 . . . . . . . . . 10 2 ∈ ℝ
64 1lt2 11179 . . . . . . . . . 10 1 < 2
6563, 64pm3.2i 471 . . . . . . . . 9 (2 ∈ ℝ ∧ 1 < 2)
66 1mod 12685 . . . . . . . . 9 ((2 ∈ ℝ ∧ 1 < 2) → (1 mod 2) = 1)
6765, 66mp1i 13 . . . . . . . 8 (𝑛 ∈ ℤ → (1 mod 2) = 1)
6853, 62, 673eqtr3d 2662 . . . . . . 7 (𝑛 ∈ ℤ → (((2 · 𝑛) + 1) mod 2) = 1)
6968adantl 482 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) mod 2) = 1)
7042, 69sylan9eqr 2676 . . . . 5 (((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) ∧ ((2 · 𝑛) + 1) = 𝑁) → (𝑁 mod 2) = 1)
7170ex 450 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑛 ∈ ℤ) → (((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7271rexlimdva 3027 . . 3 (𝑁 ∈ ℤ → (∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁 → (𝑁 mod 2) = 1))
7340, 72impbid 202 . 2 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
74 odd2np1 15046 . 2 (𝑁 ∈ ℤ → (¬ 2 ∥ 𝑁 ↔ ∃𝑛 ∈ ℤ ((2 · 𝑛) + 1) = 𝑁))
7573, 74bitr4d 271 1 (𝑁 ∈ ℤ → ((𝑁 mod 2) = 1 ↔ ¬ 2 ∥ 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384   = wceq 1481  wcel 1988  wne 2791  wrex 2910   class class class wbr 4644  (class class class)co 6635  cc 9919  cr 9920  0cc0 9921  1c1 9922   + caddc 9924   · cmul 9926   < clt 10059  cmin 10251   / cdiv 10669  2c2 11055  cz 11362  +crp 11817   mod cmo 12651  cdvds 14964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897  ax-un 6934  ax-cnex 9977  ax-resscn 9978  ax-1cn 9979  ax-icn 9980  ax-addcl 9981  ax-addrcl 9982  ax-mulcl 9983  ax-mulrcl 9984  ax-mulcom 9985  ax-addass 9986  ax-mulass 9987  ax-distr 9988  ax-i2m1 9989  ax-1ne0 9990  ax-1rid 9991  ax-rnegex 9992  ax-rrecex 9993  ax-cnre 9994  ax-pre-lttri 9995  ax-pre-lttrn 9996  ax-pre-ltadd 9997  ax-pre-mulgt0 9998  ax-pre-sup 9999
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-nel 2895  df-ral 2914  df-rex 2915  df-reu 2916  df-rmo 2917  df-rab 2918  df-v 3197  df-sbc 3430  df-csb 3527  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-pss 3583  df-nul 3908  df-if 4078  df-pw 4151  df-sn 4169  df-pr 4171  df-tp 4173  df-op 4175  df-uni 4428  df-iun 4513  df-br 4645  df-opab 4704  df-mpt 4721  df-tr 4744  df-id 5014  df-eprel 5019  df-po 5025  df-so 5026  df-fr 5063  df-we 5065  df-xp 5110  df-rel 5111  df-cnv 5112  df-co 5113  df-dm 5114  df-rn 5115  df-res 5116  df-ima 5117  df-pred 5668  df-ord 5714  df-on 5715  df-lim 5716  df-suc 5717  df-iota 5839  df-fun 5878  df-fn 5879  df-f 5880  df-f1 5881  df-fo 5882  df-f1o 5883  df-fv 5884  df-riota 6596  df-ov 6638  df-oprab 6639  df-mpt2 6640  df-om 7051  df-wrecs 7392  df-recs 7453  df-rdg 7491  df-er 7727  df-en 7941  df-dom 7942  df-sdom 7943  df-sup 8333  df-inf 8334  df-pnf 10061  df-mnf 10062  df-xr 10063  df-ltxr 10064  df-le 10065  df-sub 10253  df-neg 10254  df-div 10670  df-nn 11006  df-2 11064  df-n0 11278  df-z 11363  df-uz 11673  df-rp 11818  df-fl 12576  df-mod 12652  df-dvds 14965
This theorem is referenced by:  2lgslem3b1  25107  2lgslem3c1  25108  ex-mod  27276  dig2nn1st  42164  0dig2nn0o  42172  dig2bits  42173
  Copyright terms: Public domain W3C validator