MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moddi Structured version   Visualization version   GIF version

Theorem moddi 13310
Description: Distribute multiplication over a modulo operation. (Contributed by NM, 11-Nov-2008.)
Assertion
Ref Expression
moddi ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))

Proof of Theorem moddi
StepHypRef Expression
1 rpcn 12402 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℂ)
213ad2ant1 1129 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐴 ∈ ℂ)
3 recn 10629 . . . . 5 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
433ad2ant2 1130 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐵 ∈ ℂ)
5 rpre 12400 . . . . . . . 8 (𝐶 ∈ ℝ+𝐶 ∈ ℝ)
65adantl 484 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℝ)
7 refldivcl 13196 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
86, 7remulcld 10673 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℝ)
98recnd 10671 . . . . 5 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
1093adant1 1126 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 · (⌊‘(𝐵 / 𝐶))) ∈ ℂ)
112, 4, 10subdid 11098 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))))
12 rpcnne0 12410 . . . . . . . . 9 (𝐶 ∈ ℝ+ → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
13123ad2ant3 1131 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0))
14 rpcnne0 12410 . . . . . . . . 9 (𝐴 ∈ ℝ+ → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
15143ad2ant1 1129 . . . . . . . 8 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
16 divcan5 11344 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ (𝐶 ∈ ℂ ∧ 𝐶 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
174, 13, 15, 16syl3anc 1367 . . . . . . 7 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) / (𝐴 · 𝐶)) = (𝐵 / 𝐶))
1817fveq2d 6676 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))) = (⌊‘(𝐵 / 𝐶)))
1918oveq2d 7174 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))))
20 rpcn 12402 . . . . . . 7 (𝐶 ∈ ℝ+𝐶 ∈ ℂ)
21203ad2ant3 1131 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → 𝐶 ∈ ℂ)
22 rerpdivcl 12422 . . . . . . . 8 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 / 𝐶) ∈ ℝ)
23 reflcl 13169 . . . . . . . . 9 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℝ)
2423recnd 10671 . . . . . . . 8 ((𝐵 / 𝐶) ∈ ℝ → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
2522, 24syl 17 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
26253adant1 1126 . . . . . 6 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (⌊‘(𝐵 / 𝐶)) ∈ ℂ)
272, 21, 26mulassd 10666 . . . . 5 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐶) · (⌊‘(𝐵 / 𝐶))) = (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))))
2819, 27eqtr2d 2859 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶)))) = ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶)))))
2928oveq2d 7174 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) − (𝐴 · (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
3011, 29eqtrd 2858 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
31 modval 13242 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
32313adant1 1126 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐵 mod 𝐶) = (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶)))))
3332oveq2d 7174 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = (𝐴 · (𝐵 − (𝐶 · (⌊‘(𝐵 / 𝐶))))))
34 rpre 12400 . . . . 5 (𝐴 ∈ ℝ+𝐴 ∈ ℝ)
35 remulcl 10624 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
3634, 35sylan 582 . . . 4 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
37363adant3 1128 . . 3 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · 𝐵) ∈ ℝ)
38 rpmulcl 12415 . . 3 ((𝐴 ∈ ℝ+𝐶 ∈ ℝ+) → (𝐴 · 𝐶) ∈ ℝ+)
39 modval 13242 . . 3 (((𝐴 · 𝐵) ∈ ℝ ∧ (𝐴 · 𝐶) ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4037, 38, 393imp3i2an 1341 . 2 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → ((𝐴 · 𝐵) mod (𝐴 · 𝐶)) = ((𝐴 · 𝐵) − ((𝐴 · 𝐶) · (⌊‘((𝐴 · 𝐵) / (𝐴 · 𝐶))))))
4130, 33, 403eqtr4d 2868 1 ((𝐴 ∈ ℝ+𝐵 ∈ ℝ ∧ 𝐶 ∈ ℝ+) → (𝐴 · (𝐵 mod 𝐶)) = ((𝐴 · 𝐵) mod (𝐴 · 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   · cmul 10544  cmin 10872   / cdiv 11299  +crp 12392  cfl 13163   mod cmo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241
This theorem is referenced by:  dirkertrigeq  42393
  Copyright terms: Public domain W3C validator