MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modeqmodmin Structured version   Visualization version   GIF version

Theorem modeqmodmin 12683
Description: A real number equals the difference of the real number and a positive real number modulo the positive real number. (Contributed by AV, 3-Nov-2018.)
Assertion
Ref Expression
modeqmodmin ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))

Proof of Theorem modeqmodmin
StepHypRef Expression
1 modid0 12639 . . . . 5 (𝑀 ∈ ℝ+ → (𝑀 mod 𝑀) = 0)
21adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) = 0)
3 modge0 12621 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 ≤ (𝐴 mod 𝑀))
42, 3eqbrtrd 4637 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀))
5 simpl 473 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
6 rpre 11786 . . . . 5 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
76adantl 482 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
8 simpr 477 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ+)
9 modsubdir 12682 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))))
105, 7, 8, 9syl3anc 1323 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝑀 mod 𝑀) ≤ (𝐴 mod 𝑀) ↔ ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀))))
114, 10mpbid 222 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴𝑀) mod 𝑀) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))
122eqcomd 2627 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → 0 = (𝑀 mod 𝑀))
1312oveq2d 6623 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = ((𝐴 mod 𝑀) − (𝑀 mod 𝑀)))
14 modcl 12615 . . . 4 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
1514recnd 10015 . . 3 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
1615subid1d 10328 . 2 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) − 0) = (𝐴 mod 𝑀))
1711, 13, 163eqtr2rd 2662 1 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) = ((𝐴𝑀) mod 𝑀))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384   = wceq 1480  wcel 1987   class class class wbr 4615  (class class class)co 6607  cr 9882  0cc0 9883  cle 10022  cmin 10213  +crp 11779   mod cmo 12611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4743  ax-nul 4751  ax-pow 4805  ax-pr 4869  ax-un 6905  ax-cnex 9939  ax-resscn 9940  ax-1cn 9941  ax-icn 9942  ax-addcl 9943  ax-addrcl 9944  ax-mulcl 9945  ax-mulrcl 9946  ax-mulcom 9947  ax-addass 9948  ax-mulass 9949  ax-distr 9950  ax-i2m1 9951  ax-1ne0 9952  ax-1rid 9953  ax-rnegex 9954  ax-rrecex 9955  ax-cnre 9956  ax-pre-lttri 9957  ax-pre-lttrn 9958  ax-pre-ltadd 9959  ax-pre-mulgt0 9960  ax-pre-sup 9961
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3419  df-csb 3516  df-dif 3559  df-un 3561  df-in 3563  df-ss 3570  df-pss 3572  df-nul 3894  df-if 4061  df-pw 4134  df-sn 4151  df-pr 4153  df-tp 4155  df-op 4157  df-uni 4405  df-iun 4489  df-br 4616  df-opab 4676  df-mpt 4677  df-tr 4715  df-eprel 4987  df-id 4991  df-po 4997  df-so 4998  df-fr 5035  df-we 5037  df-xp 5082  df-rel 5083  df-cnv 5084  df-co 5085  df-dm 5086  df-rn 5087  df-res 5088  df-ima 5089  df-pred 5641  df-ord 5687  df-on 5688  df-lim 5689  df-suc 5690  df-iota 5812  df-fun 5851  df-fn 5852  df-f 5853  df-f1 5854  df-fo 5855  df-f1o 5856  df-fv 5857  df-riota 6568  df-ov 6610  df-oprab 6611  df-mpt2 6612  df-om 7016  df-wrecs 7355  df-recs 7416  df-rdg 7454  df-er 7690  df-en 7903  df-dom 7904  df-sdom 7905  df-sup 8295  df-inf 8296  df-pnf 10023  df-mnf 10024  df-xr 10025  df-ltxr 10026  df-le 10027  df-sub 10215  df-neg 10216  df-div 10632  df-nn 10968  df-n0 11240  df-z 11325  df-uz 11635  df-rp 11780  df-fl 12536  df-mod 12612
This theorem is referenced by:  cshwsublen  13482  nnpw2pmod  41685
  Copyright terms: Public domain W3C validator