MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modexp Structured version   Visualization version   GIF version

Theorem modexp 13602
Description: Exponentiation property of the modulo operation, see theorem 5.2(c) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 28-Feb-2014.)
Assertion
Ref Expression
modexp (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))

Proof of Theorem modexp
Dummy variables 𝑥 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1195 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → 𝐶 ∈ ℕ0)
2 id 22 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
323adant2l 1174 . 2 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)))
4 oveq2 7166 . . . . . 6 (𝑥 = 0 → (𝐴𝑥) = (𝐴↑0))
54oveq1d 7173 . . . . 5 (𝑥 = 0 → ((𝐴𝑥) mod 𝐷) = ((𝐴↑0) mod 𝐷))
6 oveq2 7166 . . . . . 6 (𝑥 = 0 → (𝐵𝑥) = (𝐵↑0))
76oveq1d 7173 . . . . 5 (𝑥 = 0 → ((𝐵𝑥) mod 𝐷) = ((𝐵↑0) mod 𝐷))
85, 7eqeq12d 2839 . . . 4 (𝑥 = 0 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷)))
98imbi2d 343 . . 3 (𝑥 = 0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))))
10 oveq2 7166 . . . . . 6 (𝑥 = 𝑘 → (𝐴𝑥) = (𝐴𝑘))
1110oveq1d 7173 . . . . 5 (𝑥 = 𝑘 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝑘) mod 𝐷))
12 oveq2 7166 . . . . . 6 (𝑥 = 𝑘 → (𝐵𝑥) = (𝐵𝑘))
1312oveq1d 7173 . . . . 5 (𝑥 = 𝑘 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
1411, 13eqeq12d 2839 . . . 4 (𝑥 = 𝑘 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)))
1514imbi2d 343 . . 3 (𝑥 = 𝑘 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))))
16 oveq2 7166 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐴𝑥) = (𝐴↑(𝑘 + 1)))
1716oveq1d 7173 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐴𝑥) mod 𝐷) = ((𝐴↑(𝑘 + 1)) mod 𝐷))
18 oveq2 7166 . . . . . 6 (𝑥 = (𝑘 + 1) → (𝐵𝑥) = (𝐵↑(𝑘 + 1)))
1918oveq1d 7173 . . . . 5 (𝑥 = (𝑘 + 1) → ((𝐵𝑥) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
2017, 19eqeq12d 2839 . . . 4 (𝑥 = (𝑘 + 1) → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷)))
2120imbi2d 343 . . 3 (𝑥 = (𝑘 + 1) → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
22 oveq2 7166 . . . . . 6 (𝑥 = 𝐶 → (𝐴𝑥) = (𝐴𝐶))
2322oveq1d 7173 . . . . 5 (𝑥 = 𝐶 → ((𝐴𝑥) mod 𝐷) = ((𝐴𝐶) mod 𝐷))
24 oveq2 7166 . . . . . 6 (𝑥 = 𝐶 → (𝐵𝑥) = (𝐵𝐶))
2524oveq1d 7173 . . . . 5 (𝑥 = 𝐶 → ((𝐵𝑥) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
2623, 25eqeq12d 2839 . . . 4 (𝑥 = 𝐶 → (((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷) ↔ ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
2726imbi2d 343 . . 3 (𝑥 = 𝐶 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑥) mod 𝐷) = ((𝐵𝑥) mod 𝐷)) ↔ (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))))
28 zcn 11989 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℂ)
29 exp0 13436 . . . . . . 7 (𝐴 ∈ ℂ → (𝐴↑0) = 1)
3028, 29syl 17 . . . . . 6 (𝐴 ∈ ℤ → (𝐴↑0) = 1)
31 zcn 11989 . . . . . . . 8 (𝐵 ∈ ℤ → 𝐵 ∈ ℂ)
32 exp0 13436 . . . . . . . 8 (𝐵 ∈ ℂ → (𝐵↑0) = 1)
3331, 32syl 17 . . . . . . 7 (𝐵 ∈ ℤ → (𝐵↑0) = 1)
3433eqcomd 2829 . . . . . 6 (𝐵 ∈ ℤ → 1 = (𝐵↑0))
3530, 34sylan9eq 2878 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → (𝐴↑0) = (𝐵↑0))
3635oveq1d 7173 . . . 4 ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
37363ad2ant1 1129 . . 3 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑0) mod 𝐷) = ((𝐵↑0) mod 𝐷))
38 simp21l 1286 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℤ)
39 simp1 1132 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝑘 ∈ ℕ0)
40 zexpcl 13447 . . . . . . . 8 ((𝐴 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐴𝑘) ∈ ℤ)
4138, 39, 40syl2anc 586 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴𝑘) ∈ ℤ)
42 simp21r 1287 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℤ)
43 zexpcl 13447 . . . . . . . 8 ((𝐵 ∈ ℤ ∧ 𝑘 ∈ ℕ0) → (𝐵𝑘) ∈ ℤ)
4442, 39, 43syl2anc 586 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵𝑘) ∈ ℤ)
45 simp22 1203 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐷 ∈ ℝ+)
46 simp3 1134 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷))
47 simp23 1204 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴 mod 𝐷) = (𝐵 mod 𝐷))
4841, 44, 38, 42, 45, 46, 47modmul12d 13296 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴𝑘) · 𝐴) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
4938zcnd 12091 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐴 ∈ ℂ)
50 expp1 13439 . . . . . . . 8 ((𝐴 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5149, 39, 50syl2anc 586 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐴↑(𝑘 + 1)) = ((𝐴𝑘) · 𝐴))
5251oveq1d 7173 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = (((𝐴𝑘) · 𝐴) mod 𝐷))
5342zcnd 12091 . . . . . . . 8 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → 𝐵 ∈ ℂ)
54 expp1 13439 . . . . . . . 8 ((𝐵 ∈ ℂ ∧ 𝑘 ∈ ℕ0) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5553, 39, 54syl2anc 586 . . . . . . 7 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (𝐵↑(𝑘 + 1)) = ((𝐵𝑘) · 𝐵))
5655oveq1d 7173 . . . . . 6 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐵↑(𝑘 + 1)) mod 𝐷) = (((𝐵𝑘) · 𝐵) mod 𝐷))
5748, 52, 563eqtr4d 2868 . . . . 5 ((𝑘 ∈ ℕ0 ∧ ((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) ∧ ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))
58573exp 1115 . . . 4 (𝑘 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → (((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
5958a2d 29 . . 3 (𝑘 ∈ ℕ0 → ((((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝑘) mod 𝐷) = ((𝐵𝑘) mod 𝐷)) → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴↑(𝑘 + 1)) mod 𝐷) = ((𝐵↑(𝑘 + 1)) mod 𝐷))))
609, 15, 21, 27, 37, 59nn0ind 12080 . 2 (𝐶 ∈ ℕ0 → (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ 𝐷 ∈ ℝ+ ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷)))
611, 3, 60sylc 65 1 (((𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ) ∧ (𝐶 ∈ ℕ0𝐷 ∈ ℝ+) ∧ (𝐴 mod 𝐷) = (𝐵 mod 𝐷)) → ((𝐴𝐶) mod 𝐷) = ((𝐵𝐶) mod 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wcel 2114  (class class class)co 7158  cc 10537  0cc0 10539  1c1 10540   + caddc 10542   · cmul 10544  0cn0 11900  cz 11984  +crp 12392   mod cmo 13240  cexp 13432
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433
This theorem is referenced by:  dvdsmodexp  15617  odzdvds  16134  lgsmod  25901  lgsne0  25913  fmtnoprmfac1lem  43733  sfprmdvdsmersenne  43775  41prothprmlem2  43790
  Copyright terms: Public domain W3C validator