Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modexp2m1d Structured version   Visualization version   GIF version

Theorem modexp2m1d 42035
Description: The square of an integer which is -1 modulo a number greater than 1 is 1 modulo the same modulus. (Contributed by AV, 5-Jul-2020.)
Hypotheses
Ref Expression
modexp2m1d.a (𝜑𝐴 ∈ ℤ)
modexp2m1d.e (𝜑𝐸 ∈ ℝ+)
modexp2m1d.g (𝜑 → 1 < 𝐸)
modexp2m1d.m (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸))
Assertion
Ref Expression
modexp2m1d (𝜑 → ((𝐴↑2) mod 𝐸) = 1)

Proof of Theorem modexp2m1d
StepHypRef Expression
1 modexp2m1d.a . . . . . 6 (𝜑𝐴 ∈ ℤ)
21zcnd 11671 . . . . 5 (𝜑𝐴 ∈ ℂ)
32sqvald 13195 . . . 4 (𝜑 → (𝐴↑2) = (𝐴 · 𝐴))
43oveq1d 6824 . . 3 (𝜑 → ((𝐴↑2) mod 𝐸) = ((𝐴 · 𝐴) mod 𝐸))
5 neg1z 11601 . . . . 5 -1 ∈ ℤ
65a1i 11 . . . 4 (𝜑 → -1 ∈ ℤ)
7 modexp2m1d.e . . . 4 (𝜑𝐸 ∈ ℝ+)
8 modexp2m1d.m . . . 4 (𝜑 → (𝐴 mod 𝐸) = (-1 mod 𝐸))
91, 6, 1, 6, 7, 8, 8modmul12d 12914 . . 3 (𝜑 → ((𝐴 · 𝐴) mod 𝐸) = ((-1 · -1) mod 𝐸))
104, 9eqtrd 2790 . 2 (𝜑 → ((𝐴↑2) mod 𝐸) = ((-1 · -1) mod 𝐸))
11 neg1mulneg1e1 11433 . . . . 5 (-1 · -1) = 1
1211a1i 11 . . . 4 (𝜑 → (-1 · -1) = 1)
1312oveq1d 6824 . . 3 (𝜑 → ((-1 · -1) mod 𝐸) = (1 mod 𝐸))
147rpred 12061 . . . 4 (𝜑𝐸 ∈ ℝ)
15 modexp2m1d.g . . . 4 (𝜑 → 1 < 𝐸)
16 1mod 12892 . . . 4 ((𝐸 ∈ ℝ ∧ 1 < 𝐸) → (1 mod 𝐸) = 1)
1714, 15, 16syl2anc 696 . . 3 (𝜑 → (1 mod 𝐸) = 1)
1813, 17eqtrd 2790 . 2 (𝜑 → ((-1 · -1) mod 𝐸) = 1)
1910, 18eqtrd 2790 1 (𝜑 → ((𝐴↑2) mod 𝐸) = 1)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1628  wcel 2135   class class class wbr 4800  (class class class)co 6809  cr 10123  1c1 10125   · cmul 10129   < clt 10262  -cneg 10455  2c2 11258  cz 11565  +crp 12021   mod cmo 12858  cexp 13050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201  ax-pre-sup 10202
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rmo 3054  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-2nd 7330  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-sup 8509  df-inf 8510  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-div 10873  df-nn 11209  df-2 11267  df-n0 11481  df-z 11566  df-uz 11876  df-rp 12022  df-fl 12783  df-mod 12859  df-seq 12992  df-exp 13051
This theorem is referenced by:  proththd  42037
  Copyright terms: Public domain W3C validator