MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfsummod Structured version   Visualization version   GIF version

Theorem modfsummod 15151
Description: A finite sum modulo a positive integer equals the finite sum of their summands modulo the positive integer, modulo the positive integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Hypotheses
Ref Expression
modfsummod.n (𝜑𝑁 ∈ ℕ)
modfsummod.1 (𝜑𝐴 ∈ Fin)
modfsummod.2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
Assertion
Ref Expression
modfsummod (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁
Allowed substitution hints:   𝜑(𝑘)   𝐵(𝑘)

Proof of Theorem modfsummod
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 modfsummod.2 . 2 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℤ)
2 modfsummod.n . 2 (𝜑𝑁 ∈ ℕ)
3 modfsummod.1 . . 3 (𝜑𝐴 ∈ Fin)
4 raleq 3407 . . . . . 6 (𝑥 = ∅ → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ ∅ 𝐵 ∈ ℤ))
54anbi1d 631 . . . . 5 (𝑥 = ∅ → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
6 sumeq1 15047 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ ∅ 𝐵)
76oveq1d 7173 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁))
8 sumeq1 15047 . . . . . . 7 (𝑥 = ∅ → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ ∅ (𝐵 mod 𝑁))
98oveq1d 7173 . . . . . 6 (𝑥 = ∅ → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
107, 9eqeq12d 2839 . . . . 5 (𝑥 = ∅ → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁)))
115, 10imbi12d 347 . . . 4 (𝑥 = ∅ → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))))
12 raleq 3407 . . . . . 6 (𝑥 = 𝑦 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝑦 𝐵 ∈ ℤ))
1312anbi1d 631 . . . . 5 (𝑥 = 𝑦 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
14 sumeq1 15047 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 𝐵 = Σ𝑘𝑦 𝐵)
1514oveq1d 7173 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑦 𝐵 mod 𝑁))
16 sumeq1 15047 . . . . . . 7 (𝑥 = 𝑦 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝑦 (𝐵 mod 𝑁))
1716oveq1d 7173 . . . . . 6 (𝑥 = 𝑦 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))
1815, 17eqeq12d 2839 . . . . 5 (𝑥 = 𝑦 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)))
1913, 18imbi12d 347 . . . 4 (𝑥 = 𝑦 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁))))
20 raleq 3407 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
2120anbi1d 631 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
22 sumeq1 15047 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 𝐵 = Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵)
2322oveq1d 7173 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁))
24 sumeq1 15047 . . . . . . 7 (𝑥 = (𝑦 ∪ {𝑧}) → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁))
2524oveq1d 7173 . . . . . 6 (𝑥 = (𝑦 ∪ {𝑧}) → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))
2623, 25eqeq12d 2839 . . . . 5 (𝑥 = (𝑦 ∪ {𝑧}) → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
2721, 26imbi12d 347 . . . 4 (𝑥 = (𝑦 ∪ {𝑧}) → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
28 raleq 3407 . . . . . 6 (𝑥 = 𝐴 → (∀𝑘𝑥 𝐵 ∈ ℤ ↔ ∀𝑘𝐴 𝐵 ∈ ℤ))
2928anbi1d 631 . . . . 5 (𝑥 = 𝐴 → ((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ (∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)))
30 sumeq1 15047 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 𝐵 = Σ𝑘𝐴 𝐵)
3130oveq1d 7173 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝐴 𝐵 mod 𝑁))
32 sumeq1 15047 . . . . . . 7 (𝑥 = 𝐴 → Σ𝑘𝑥 (𝐵 mod 𝑁) = Σ𝑘𝐴 (𝐵 mod 𝑁))
3332oveq1d 7173 . . . . . 6 (𝑥 = 𝐴 → (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
3431, 33eqeq12d 2839 . . . . 5 (𝑥 = 𝐴 → ((Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁) ↔ (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
3529, 34imbi12d 347 . . . 4 (𝑥 = 𝐴 → (((∀𝑘𝑥 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑥 𝐵 mod 𝑁) = (Σ𝑘𝑥 (𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))))
36 sum0 15080 . . . . . . . 8 Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0
3736a1i 11 . . . . . . 7 (𝑁 ∈ ℕ → Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) = 0)
3837oveq1d 7173 . . . . . 6 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁) = (0 mod 𝑁))
39 sum0 15080 . . . . . . 7 Σ𝑘 ∈ ∅ 𝐵 = 0
4039oveq1i 7168 . . . . . 6 𝑘 ∈ ∅ 𝐵 mod 𝑁) = (0 mod 𝑁)
4138, 40syl6reqr 2877 . . . . 5 (𝑁 ∈ ℕ → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
4241adantl 484 . . . 4 ((∀𝑘 ∈ ∅ 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ ∅ 𝐵 mod 𝑁) = (Σ𝑘 ∈ ∅ (𝐵 mod 𝑁) mod 𝑁))
43 simpll 765 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → 𝑦 ∈ Fin)
44 simplrr 776 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → 𝑁 ∈ ℕ)
45 ralun 4170 . . . . . . . . . . . . 13 ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
4645ex 415 . . . . . . . . . . . 12 (∀𝑘𝑦 𝐵 ∈ ℤ → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
4746ad2antrl 726 . . . . . . . . . . 11 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ))
4847imp 409 . . . . . . . . . 10 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ)
49 modfsummods 15150 . . . . . . . . . 10 ((𝑦 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
5043, 44, 48, 49syl3anc 1367 . . . . . . . . 9 (((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
5150ex 415 . . . . . . . 8 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5251com23 86 . . . . . . 7 ((𝑦 ∈ Fin ∧ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ)) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
5352ex 415 . . . . . 6 (𝑦 ∈ Fin → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
5453a2d 29 . . . . 5 (𝑦 ∈ Fin → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))))
55 ralunb 4169 . . . . . . . 8 (∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ↔ (∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
5655anbi1i 625 . . . . . . 7 ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ))
5756imbi1i 352 . . . . . 6 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
58 an32 644 . . . . . . 7 (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ))
5958imbi1i 352 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)))
60 impexp 453 . . . . . 6 ((((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ ∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6157, 59, 603bitri 299 . . . . 5 (((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁)) ↔ ((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (∀𝑘 ∈ {𝑧}𝐵 ∈ ℤ → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6254, 61syl6ibr 254 . . . 4 (𝑦 ∈ Fin → (((∀𝑘𝑦 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝑦 𝐵 mod 𝑁) = (Σ𝑘𝑦 (𝐵 mod 𝑁) mod 𝑁)) → ((∀𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘 ∈ (𝑦 ∪ {𝑧})𝐵 mod 𝑁) = (Σ𝑘 ∈ (𝑦 ∪ {𝑧})(𝐵 mod 𝑁) mod 𝑁))))
6311, 19, 27, 35, 42, 62findcard2 8760 . . 3 (𝐴 ∈ Fin → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
643, 63syl 17 . 2 (𝜑 → ((∀𝑘𝐴 𝐵 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁)))
651, 2, 64mp2and 697 1 (𝜑 → (Σ𝑘𝐴 𝐵 mod 𝑁) = (Σ𝑘𝐴 (𝐵 mod 𝑁) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wral 3140  cun 3936  c0 4293  {csn 4569  (class class class)co 7158  Fincfn 8511  0cc0 10539  cn 11640  cz 11984   mod cmo 13240  Σcsu 15044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-fz 12896  df-fzo 13037  df-fl 13165  df-mod 13241  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045
This theorem is referenced by:  numclwwlk6  28171
  Copyright terms: Public domain W3C validator