MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modfzo0difsn Structured version   Visualization version   GIF version

Theorem modfzo0difsn 12682
Description: For a number within a half-open range of nonnegative integers with one excluded integer there is a positive integer so that the number is equal to the sum of the positive integer and the excluded integer modulo the upper bound of the range. (Contributed by AV, 19-Mar-2021.)
Assertion
Ref Expression
modfzo0difsn ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Distinct variable groups:   𝑖,𝐽   𝑖,𝐾   𝑖,𝑁

Proof of Theorem modfzo0difsn
StepHypRef Expression
1 eldifi 3710 . . . . . 6 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ (0..^𝑁))
2 elfzoelz 12411 . . . . . . 7 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℤ)
32zred 11426 . . . . . 6 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℝ)
41, 3syl 17 . . . . 5 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℝ)
5 elfzoelz 12411 . . . . . 6 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℤ)
65zred 11426 . . . . 5 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℝ)
7 leloe 10068 . . . . 5 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
84, 6, 7syl2anr 495 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 ↔ (𝐾 < 𝐽𝐾 = 𝐽)))
9 elfzo0 12449 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) ↔ (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
10 elfzo0 12449 . . . . . . . . . . . . . . 15 (𝐽 ∈ (0..^𝑁) ↔ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁))
11 nn0cn 11246 . . . . . . . . . . . . . . . . . . . . . 22 (𝐾 ∈ ℕ0𝐾 ∈ ℂ)
1211adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℂ)
1312adantl 482 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℂ)
14 nn0cn 11246 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℂ)
15143ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℂ)
1615adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℂ)
17 nncn 10972 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
18173ad2ant2 1081 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℂ)
1918adantr 481 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℂ)
2013, 16, 19subadd23d 10358 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) = (𝐾 + (𝑁𝐽)))
21 simpl 473 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℕ0)
22 nn0z 11344 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0𝐽 ∈ ℤ)
23 nnz 11343 . . . . . . . . . . . . . . . . . . . . . 22 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
24 znnsub 11367 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2522, 23, 24syl2an 494 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐽 < 𝑁 ↔ (𝑁𝐽) ∈ ℕ))
2625biimp3a 1429 . . . . . . . . . . . . . . . . . . . 20 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝑁𝐽) ∈ ℕ)
27 nn0nnaddcl 11268 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝑁𝐽) ∈ ℕ) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2821, 26, 27syl2anr 495 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 + (𝑁𝐽)) ∈ ℕ)
2920, 28eqeltrd 2698 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
3029adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ ℕ)
31 simp2 1060 . . . . . . . . . . . . . . . . . . 19 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℕ)
3231adantr 481 . . . . . . . . . . . . . . . . . 18 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℕ)
3332adantr 481 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → 𝑁 ∈ ℕ)
34 nn0re 11245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐾 ∈ ℕ0𝐾 ∈ ℝ)
3534adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℝ)
3635adantl 482 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐾 ∈ ℝ)
37 nn0re 11245 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐽 ∈ ℕ0𝐽 ∈ ℝ)
38373ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℝ)
3938adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝐽 ∈ ℝ)
4036, 39sublt0d 10597 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) < 0 ↔ 𝐾 < 𝐽))
4140bicomd 213 . . . . . . . . . . . . . . . . . . 19 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾 < 𝐽 ↔ (𝐾𝐽) < 0))
4241biimpa 501 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → (𝐾𝐽) < 0)
43 resubcl 10289 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
4435, 38, 43syl2anr 495 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → (𝐾𝐽) ∈ ℝ)
45 nnre 10971 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
46453ad2ant2 1081 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝑁 ∈ ℝ)
4746adantr 481 . . . . . . . . . . . . . . . . . . . . 21 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → 𝑁 ∈ ℝ)
4844, 47jca 554 . . . . . . . . . . . . . . . . . . . 20 (((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
4948adantr 481 . . . . . . . . . . . . . . . . . . 19 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ))
50 ltaddnegr 10196 . . . . . . . . . . . . . . . . . . 19 (((𝐾𝐽) ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5149, 50syl 17 . . . . . . . . . . . . . . . . . 18 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) < 0 ↔ ((𝐾𝐽) + 𝑁) < 𝑁))
5242, 51mpbid 222 . . . . . . . . . . . . . . . . 17 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) < 𝑁)
53 elfzo1 12458 . . . . . . . . . . . . . . . . 17 (((𝐾𝐽) + 𝑁) ∈ (1..^𝑁) ↔ (((𝐾𝐽) + 𝑁) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ ((𝐾𝐽) + 𝑁) < 𝑁))
5430, 33, 52, 53syl3anbrc 1244 . . . . . . . . . . . . . . . 16 ((((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) ∧ (𝐾 ∈ ℕ0𝐾 < 𝑁)) ∧ 𝐾 < 𝐽) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
5554exp31 629 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5610, 55sylbi 207 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
5756com12 32 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
58573adant2 1078 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
599, 58sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
601, 59syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))))
6160impcom 446 . . . . . . . . 9 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 < 𝐽 → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁)))
6261impcom 446 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝑁) ∈ (1..^𝑁))
63 oveq1 6611 . . . . . . . . . . 11 (𝑖 = ((𝐾𝐽) + 𝑁) → (𝑖 + 𝐽) = (((𝐾𝐽) + 𝑁) + 𝐽))
642zcnd 11427 . . . . . . . . . . . . . . . . . . . . 21 (𝐾 ∈ (0..^𝑁) → 𝐾 ∈ ℂ)
6564adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐾 ∈ ℂ)
6614adantr 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝐽 ∈ ℂ)
6766adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝐽 ∈ ℂ)
6817adantl 482 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
6968adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → 𝑁 ∈ ℂ)
7065, 67, 693jca 1240 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ (0..^𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ)) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7170ex 450 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
721, 71syl 17 . . . . . . . . . . . . . . . . 17 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7372com12 32 . . . . . . . . . . . . . . . 16 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
74733adant3 1079 . . . . . . . . . . . . . . 15 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7510, 74sylbi 207 . . . . . . . . . . . . . 14 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ)))
7675imp 445 . . . . . . . . . . . . 13 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
7776adantl 482 . . . . . . . . . . . 12 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ))
78 nppcan 10247 . . . . . . . . . . . 12 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
7977, 78syl 17 . . . . . . . . . . 11 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (((𝐾𝐽) + 𝑁) + 𝐽) = (𝐾 + 𝑁))
8063, 79sylan9eqr 2677 . . . . . . . . . 10 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝑖 + 𝐽) = (𝐾 + 𝑁))
8180oveq1d 6619 . . . . . . . . 9 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → ((𝑖 + 𝐽) mod 𝑁) = ((𝐾 + 𝑁) mod 𝑁))
8281eqeq2d 2631 . . . . . . . 8 (((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = ((𝐾𝐽) + 𝑁)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = ((𝐾 + 𝑁) mod 𝑁)))
839biimpi 206 . . . . . . . . . . . . 13 (𝐾 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8483a1d 25 . . . . . . . . . . . 12 (𝐾 ∈ (0..^𝑁) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
851, 84syl 17 . . . . . . . . . . 11 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁)))
8685impcom 446 . . . . . . . . . 10 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
8786adantl 482 . . . . . . . . 9 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁))
88 addmodidr 12659 . . . . . . . . . 10 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐾 + 𝑁) mod 𝑁) = 𝐾)
8988eqcomd 2627 . . . . . . . . 9 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9087, 89syl 17 . . . . . . . 8 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = ((𝐾 + 𝑁) mod 𝑁))
9162, 82, 90rspcedvd 3302 . . . . . . 7 ((𝐾 < 𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
9291ex 450 . . . . . 6 (𝐾 < 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
93 eldifsn 4287 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) ↔ (𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽))
94 eqneqall 2801 . . . . . . . . . . 11 (𝐾 = 𝐽 → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9594com12 32 . . . . . . . . . 10 (𝐾𝐽 → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9695adantl 482 . . . . . . . . 9 ((𝐾 ∈ (0..^𝑁) ∧ 𝐾𝐽) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9793, 96sylbi 207 . . . . . . . 8 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9897adantl 482 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 = 𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
9998com12 32 . . . . . 6 (𝐾 = 𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
10092, 99jaoi 394 . . . . 5 ((𝐾 < 𝐽𝐾 = 𝐽) → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
101100com12 32 . . . 4 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾 < 𝐽𝐾 = 𝐽) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
1028, 101sylbid 230 . . 3 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾𝐽 → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
103102com12 32 . 2 (𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
104 ltnle 10061 . . . . . . . . 9 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
1056, 4, 104syl2an 494 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 ↔ ¬ 𝐾𝐽))
106105bicomd 213 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽𝐽 < 𝐾))
107223ad2ant1 1080 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 𝐽 ∈ ℤ)
108 nn0z 11344 . . . . . . . . . . . . . . . . . 18 (𝐾 ∈ ℕ0𝐾 ∈ ℤ)
109108adantr 481 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → 𝐾 ∈ ℤ)
110 znnsub 11367 . . . . . . . . . . . . . . . . 17 ((𝐽 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
111107, 109, 110syl2anr 495 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 < 𝐾 ↔ (𝐾𝐽) ∈ ℕ))
112111biimpa 501 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) ∈ ℕ)
11331adantl 482 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℕ)
114113adantr 481 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → 𝑁 ∈ ℕ)
115 nn0ge0 11262 . . . . . . . . . . . . . . . . . . . . . 22 (𝐽 ∈ ℕ0 → 0 ≤ 𝐽)
1161153ad2ant1 1080 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → 0 ≤ 𝐽)
117116adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 0 ≤ 𝐽)
118 subge02 10488 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℝ ∧ 𝐽 ∈ ℝ) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
11934, 38, 118syl2an 494 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (0 ≤ 𝐽 ↔ (𝐾𝐽) ≤ 𝐾))
120117, 119mpbid 222 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) ≤ 𝐾)
12138adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐽 ∈ ℝ)
12234adantr 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝐾 ∈ ℝ)
12346adantl 482 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → 𝑁 ∈ ℝ)
124121, 122, 1233jca 1240 . . . . . . . . . . . . . . . . . . . . 21 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
12543ancoms 469 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
1261253adant3 1079 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (𝐾𝐽) ∈ ℝ)
127 simp2 1060 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝐾 ∈ ℝ)
128 simp3 1061 . . . . . . . . . . . . . . . . . . . . . 22 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → 𝑁 ∈ ℝ)
129126, 127, 1283jca 1240 . . . . . . . . . . . . . . . . . . . . 21 ((𝐽 ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
130124, 129syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → ((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ))
131 lelttr 10072 . . . . . . . . . . . . . . . . . . . 20 (((𝐾𝐽) ∈ ℝ ∧ 𝐾 ∈ ℝ ∧ 𝑁 ∈ ℝ) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
132130, 131syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (((𝐾𝐽) ≤ 𝐾𝐾 < 𝑁) → (𝐾𝐽) < 𝑁))
133120, 132mpand 710 . . . . . . . . . . . . . . . . . 18 ((𝐾 ∈ ℕ0 ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾 < 𝑁 → (𝐾𝐽) < 𝑁))
134133impancom 456 . . . . . . . . . . . . . . . . 17 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾𝐽) < 𝑁))
135134imp 445 . . . . . . . . . . . . . . . 16 (((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) → (𝐾𝐽) < 𝑁)
136135adantr 481 . . . . . . . . . . . . . . 15 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → (𝐾𝐽) < 𝑁)
137112, 114, 1363jca 1240 . . . . . . . . . . . . . 14 ((((𝐾 ∈ ℕ0𝐾 < 𝑁) ∧ (𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁)) ∧ 𝐽 < 𝐾) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
138137exp31 629 . . . . . . . . . . . . 13 ((𝐾 ∈ ℕ0𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1391383adant2 1078 . . . . . . . . . . . 12 ((𝐾 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐾 < 𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1409, 139sylbi 207 . . . . . . . . . . 11 (𝐾 ∈ (0..^𝑁) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
1411, 140syl 17 . . . . . . . . . 10 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
142141com12 32 . . . . . . . . 9 ((𝐽 ∈ ℕ0𝑁 ∈ ℕ ∧ 𝐽 < 𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
14310, 142sylbi 207 . . . . . . . 8 (𝐽 ∈ (0..^𝑁) → (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))))
144143imp 445 . . . . . . 7 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐽 < 𝐾 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
145106, 144sylbid 230 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (¬ 𝐾𝐽 → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁)))
146145impcom 446 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
147 elfzo1 12458 . . . . 5 ((𝐾𝐽) ∈ (1..^𝑁) ↔ ((𝐾𝐽) ∈ ℕ ∧ 𝑁 ∈ ℕ ∧ (𝐾𝐽) < 𝑁))
148146, 147sylibr 224 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾𝐽) ∈ (1..^𝑁))
149 oveq1 6611 . . . . . . 7 (𝑖 = (𝐾𝐽) → (𝑖 + 𝐽) = ((𝐾𝐽) + 𝐽))
1501, 64syl 17 . . . . . . . . 9 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → 𝐾 ∈ ℂ)
1515zcnd 11427 . . . . . . . . 9 (𝐽 ∈ (0..^𝑁) → 𝐽 ∈ ℂ)
152 npcan 10234 . . . . . . . . 9 ((𝐾 ∈ ℂ ∧ 𝐽 ∈ ℂ) → ((𝐾𝐽) + 𝐽) = 𝐾)
153150, 151, 152syl2anr 495 . . . . . . . 8 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ((𝐾𝐽) + 𝐽) = 𝐾)
154153adantl 482 . . . . . . 7 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ((𝐾𝐽) + 𝐽) = 𝐾)
155149, 154sylan9eqr 2677 . . . . . 6 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝑖 + 𝐽) = 𝐾)
156155oveq1d 6619 . . . . 5 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → ((𝑖 + 𝐽) mod 𝑁) = (𝐾 mod 𝑁))
157156eqeq2d 2631 . . . 4 (((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) ∧ 𝑖 = (𝐾𝐽)) → (𝐾 = ((𝑖 + 𝐽) mod 𝑁) ↔ 𝐾 = (𝐾 mod 𝑁)))
158 zmodidfzoimp 12640 . . . . . . . 8 (𝐾 ∈ (0..^𝑁) → (𝐾 mod 𝑁) = 𝐾)
1591, 158syl 17 . . . . . . 7 (𝐾 ∈ ((0..^𝑁) ∖ {𝐽}) → (𝐾 mod 𝑁) = 𝐾)
160159adantl 482 . . . . . 6 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → (𝐾 mod 𝑁) = 𝐾)
161160adantl 482 . . . . 5 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → (𝐾 mod 𝑁) = 𝐾)
162161eqcomd 2627 . . . 4 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → 𝐾 = (𝐾 mod 𝑁))
163148, 157, 162rspcedvd 3302 . . 3 ((¬ 𝐾𝐽 ∧ (𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽}))) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
164163ex 450 . 2 𝐾𝐽 → ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁)))
165103, 164pm2.61i 176 1 ((𝐽 ∈ (0..^𝑁) ∧ 𝐾 ∈ ((0..^𝑁) ∖ {𝐽})) → ∃𝑖 ∈ (1..^𝑁)𝐾 = ((𝑖 + 𝐽) mod 𝑁))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cdif 3552  {csn 4148   class class class wbr 4613  (class class class)co 6604  cc 9878  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cn 10964  0cn0 11236  cz 11321  ..^cfzo 12406   mod cmo 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-ico 12123  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609
This theorem is referenced by:  cshimadifsn  13512
  Copyright terms: Public domain W3C validator