MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modgcd Structured version   Visualization version   GIF version

Theorem modgcd 15196
Description: The gcd remains unchanged if one operand is replaced with its remainder modulo the other. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
modgcd ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))

Proof of Theorem modgcd
StepHypRef Expression
1 zre 11341 . . . . . 6 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
2 nnrp 11802 . . . . . 6 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
3 modval 12626 . . . . . 6 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
41, 2, 3syl2an 494 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
5 zcn 11342 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
65adantr 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℂ)
7 nncn 10988 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℂ)
87adantl 482 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℂ)
9 nnre 10987 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
10 nnne0 11013 . . . . . . . . . 10 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
11 redivcl 10704 . . . . . . . . . 10 ((𝑀 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 𝑁 ≠ 0) → (𝑀 / 𝑁) ∈ ℝ)
121, 9, 10, 11syl3an 1365 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
13123anidm23 1382 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 / 𝑁) ∈ ℝ)
1413flcld 12555 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℤ)
1514zcnd 11443 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝑀 / 𝑁)) ∈ ℂ)
16 mulneg1 10426 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -((⌊‘(𝑀 / 𝑁)) · 𝑁))
17 mulcom 9982 . . . . . . . . . . . 12 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((⌊‘(𝑀 / 𝑁)) · 𝑁) = (𝑁 · (⌊‘(𝑀 / 𝑁))))
1817negeqd 10235 . . . . . . . . . . 11 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → -((⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
1916, 18eqtrd 2655 . . . . . . . . . 10 (((⌊‘(𝑀 / 𝑁)) ∈ ℂ ∧ 𝑁 ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2019ancoms 469 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
21203adant1 1077 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (-(⌊‘(𝑀 / 𝑁)) · 𝑁) = -(𝑁 · (⌊‘(𝑀 / 𝑁))))
2221oveq2d 6631 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))))
23 mulcl 9980 . . . . . . . . 9 ((𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ)
24 negsub 10289 . . . . . . . . 9 ((𝑀 ∈ ℂ ∧ (𝑁 · (⌊‘(𝑀 / 𝑁))) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2523, 24sylan2 491 . . . . . . . 8 ((𝑀 ∈ ℂ ∧ (𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ)) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
26253impb 1257 . . . . . . 7 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + -(𝑁 · (⌊‘(𝑀 / 𝑁)))) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
2722, 26eqtrd 2655 . . . . . 6 ((𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ (⌊‘(𝑀 / 𝑁)) ∈ ℂ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
286, 8, 15, 27syl3anc 1323 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)) = (𝑀 − (𝑁 · (⌊‘(𝑀 / 𝑁)))))
294, 28eqtr4d 2658 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) = (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁)))
3029oveq2d 6631 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3114znegcld 11444 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → -(⌊‘(𝑀 / 𝑁)) ∈ ℤ)
32 nnz 11359 . . . . 5 (𝑁 ∈ ℕ → 𝑁 ∈ ℤ)
3332adantl 482 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℤ)
34 simpl 473 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑀 ∈ ℤ)
35 gcdaddm 15189 . . . 4 ((-(⌊‘(𝑀 / 𝑁)) ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3631, 33, 34, 35syl3anc 1323 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑁 gcd (𝑀 + (-(⌊‘(𝑀 / 𝑁)) · 𝑁))))
3730, 36eqtr4d 2658 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = (𝑁 gcd 𝑀))
38 zmodcl 12646 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℕ0)
3938nn0zd 11440 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑀 mod 𝑁) ∈ ℤ)
40 gcdcom 15178 . . 3 ((𝑁 ∈ ℤ ∧ (𝑀 mod 𝑁) ∈ ℤ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
4133, 39, 40syl2anc 692 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd (𝑀 mod 𝑁)) = ((𝑀 mod 𝑁) gcd 𝑁))
42 gcdcom 15178 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4333, 34, 42syl2anc 692 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝑁 gcd 𝑀) = (𝑀 gcd 𝑁))
4437, 41, 433eqtr3d 2663 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝑀 mod 𝑁) gcd 𝑁) = (𝑀 gcd 𝑁))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1036   = wceq 1480  wcel 1987  wne 2790  cfv 5857  (class class class)co 6615  cc 9894  cr 9895  0cc0 9896   + caddc 9899   · cmul 9901  cmin 10226  -cneg 10227   / cdiv 10644  cn 10980  cz 11337  +crp 11792  cfl 12547   mod cmo 12624   gcd cgcd 15159
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fl 12549  df-mod 12625  df-seq 12758  df-exp 12817  df-cj 13789  df-re 13790  df-im 13791  df-sqrt 13925  df-abs 13926  df-dvds 14927  df-gcd 15160
This theorem is referenced by:  eucalginv  15240  phimullem  15427  eulerthlem1  15429  pockthlem  15552  gcdmodi  15721  proththd  40860
  Copyright terms: Public domain W3C validator