Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmul12d Structured version   Visualization version   GIF version

Theorem modmul12d 12764
 Description: Multiplication property of the modulo operation, see theorem 5.2(b) in [ApostolNT] p. 107. (Contributed by Mario Carneiro, 5-Feb-2015.)
Hypotheses
Ref Expression
modmul12d.1 (𝜑𝐴 ∈ ℤ)
modmul12d.2 (𝜑𝐵 ∈ ℤ)
modmul12d.3 (𝜑𝐶 ∈ ℤ)
modmul12d.4 (𝜑𝐷 ∈ ℤ)
modmul12d.5 (𝜑𝐸 ∈ ℝ+)
modmul12d.6 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
modmul12d.7 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
Assertion
Ref Expression
modmul12d (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))

Proof of Theorem modmul12d
StepHypRef Expression
1 modmul12d.1 . . . 4 (𝜑𝐴 ∈ ℤ)
21zred 11520 . . 3 (𝜑𝐴 ∈ ℝ)
3 modmul12d.2 . . . 4 (𝜑𝐵 ∈ ℤ)
43zred 11520 . . 3 (𝜑𝐵 ∈ ℝ)
5 modmul12d.3 . . 3 (𝜑𝐶 ∈ ℤ)
6 modmul12d.5 . . 3 (𝜑𝐸 ∈ ℝ+)
7 modmul12d.6 . . 3 (𝜑 → (𝐴 mod 𝐸) = (𝐵 mod 𝐸))
8 modmul1 12763 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (𝐶 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐴 mod 𝐸) = (𝐵 mod 𝐸)) → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
92, 4, 5, 6, 7, 8syl221anc 1377 . 2 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐶) mod 𝐸))
103zcnd 11521 . . . . 5 (𝜑𝐵 ∈ ℂ)
115zcnd 11521 . . . . 5 (𝜑𝐶 ∈ ℂ)
1210, 11mulcomd 10099 . . . 4 (𝜑 → (𝐵 · 𝐶) = (𝐶 · 𝐵))
1312oveq1d 6705 . . 3 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐶 · 𝐵) mod 𝐸))
145zred 11520 . . . 4 (𝜑𝐶 ∈ ℝ)
15 modmul12d.4 . . . . 5 (𝜑𝐷 ∈ ℤ)
1615zred 11520 . . . 4 (𝜑𝐷 ∈ ℝ)
17 modmul12d.7 . . . 4 (𝜑 → (𝐶 mod 𝐸) = (𝐷 mod 𝐸))
18 modmul1 12763 . . . 4 (((𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ) ∧ (𝐵 ∈ ℤ ∧ 𝐸 ∈ ℝ+) ∧ (𝐶 mod 𝐸) = (𝐷 mod 𝐸)) → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
1914, 16, 3, 6, 17, 18syl221anc 1377 . . 3 (𝜑 → ((𝐶 · 𝐵) mod 𝐸) = ((𝐷 · 𝐵) mod 𝐸))
2015zcnd 11521 . . . . 5 (𝜑𝐷 ∈ ℂ)
2120, 10mulcomd 10099 . . . 4 (𝜑 → (𝐷 · 𝐵) = (𝐵 · 𝐷))
2221oveq1d 6705 . . 3 (𝜑 → ((𝐷 · 𝐵) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
2313, 19, 223eqtrd 2689 . 2 (𝜑 → ((𝐵 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
249, 23eqtrd 2685 1 (𝜑 → ((𝐴 · 𝐶) mod 𝐸) = ((𝐵 · 𝐷) mod 𝐸))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   = wceq 1523   ∈ wcel 2030  (class class class)co 6690  ℝcr 9973   · cmul 9979  ℤcz 11415  ℝ+crp 11870   mod cmo 12708 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-inf 8390  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-fl 12633  df-mod 12709 This theorem is referenced by:  modexp  13039  fprodmodd  14772  smumul  15262  modxai  15819  elqaalem2  24120  lgsdir2lem5  25099  lgseisenlem2  25146  lgseisenlem3  25147  modexp2m1d  41854
 Copyright terms: Public domain W3C validator