MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  modmuladdnn0 Structured version   Visualization version   GIF version

Theorem modmuladdnn0 13286
Description: Implication of a decomposition of a nonnegative integer into a multiple of a modulus and a remainder. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
modmuladdnn0 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑀

Proof of Theorem modmuladdnn0
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 simpr 487 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℤ)
21adantr 483 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℤ)
3 nn0cn 11910 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0𝐴 ∈ ℂ)
43adantr 483 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℂ)
54ad2antrr 724 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐴 ∈ ℂ)
6 nn0re 11909 . . . . . . . . . . . . . . 15 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
7 modcl 13244 . . . . . . . . . . . . . . 15 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
86, 7sylan 582 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℝ)
98recnd 10671 . . . . . . . . . . . . 13 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 mod 𝑀) ∈ ℂ)
109adantr 483 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴 mod 𝑀) ∈ ℂ)
11 eleq1 2902 . . . . . . . . . . . . 13 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1211adantl 484 . . . . . . . . . . . 12 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴 mod 𝑀) ∈ ℂ ↔ 𝐵 ∈ ℂ))
1310, 12mpbid 234 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐵 ∈ ℂ)
1413adantr 483 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝐵 ∈ ℂ)
15 zcn 11989 . . . . . . . . . . . 12 (𝑖 ∈ ℤ → 𝑖 ∈ ℂ)
1615adantl 484 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑖 ∈ ℂ)
17 rpcn 12402 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℂ)
1817adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℂ)
1918ad2antrr 724 . . . . . . . . . . 11 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → 𝑀 ∈ ℂ)
2016, 19mulcld 10663 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑖 · 𝑀) ∈ ℂ)
215, 14, 20subadd2d 11018 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) = (𝑖 · 𝑀) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴))
22 eqcom 2830 . . . . . . . . 9 (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ ((𝑖 · 𝑀) + 𝐵) = 𝐴)
2321, 22syl6rbbr 292 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
243ad2antrr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → 𝐴 ∈ ℂ)
2524, 13subcld 10999 . . . . . . . . . 10 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → (𝐴𝐵) ∈ ℂ)
2625adantr 483 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴𝐵) ∈ ℂ)
27 rpcnne0 12410 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2827adantl 484 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
2928ad2antrr 724 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0))
30 divmul3 11305 . . . . . . . . 9 (((𝐴𝐵) ∈ ℂ ∧ 𝑖 ∈ ℂ ∧ (𝑀 ∈ ℂ ∧ 𝑀 ≠ 0)) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
3126, 16, 29, 30syl3anc 1367 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (𝐴𝐵) = (𝑖 · 𝑀)))
32 oveq2 7166 . . . . . . . . . . . . . 14 (𝐵 = (𝐴 mod 𝑀) → (𝐴𝐵) = (𝐴 − (𝐴 mod 𝑀)))
3332oveq1d 7173 . . . . . . . . . . . . 13 (𝐵 = (𝐴 mod 𝑀) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3433eqcoms 2831 . . . . . . . . . . . 12 ((𝐴 mod 𝑀) = 𝐵 → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3534adantl 484 . . . . . . . . . . 11 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
3635adantr 483 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = ((𝐴 − (𝐴 mod 𝑀)) / 𝑀))
37 moddiffl 13253 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
386, 37sylan 582 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
3938ad2antrr 724 . . . . . . . . . 10 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴 − (𝐴 mod 𝑀)) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4036, 39eqtrd 2858 . . . . . . . . 9 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((𝐴𝐵) / 𝑀) = (⌊‘(𝐴 / 𝑀)))
4140eqeq1d 2825 . . . . . . . 8 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (((𝐴𝐵) / 𝑀) = 𝑖 ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
4223, 31, 413bitr2d 309 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) ↔ (⌊‘(𝐴 / 𝑀)) = 𝑖))
43 nn0ge0 11925 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
446, 43jca 514 . . . . . . . . . . 11 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
45 rpregt0 12406 . . . . . . . . . . 11 (𝑀 ∈ ℝ+ → (𝑀 ∈ ℝ ∧ 0 < 𝑀))
46 divge0 11511 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝑀 ∈ ℝ ∧ 0 < 𝑀)) → 0 ≤ (𝐴 / 𝑀))
4744, 45, 46syl2an 597 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (𝐴 / 𝑀))
486adantr 483 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝐴 ∈ ℝ)
49 rpre 12400 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ∈ ℝ)
5049adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ∈ ℝ)
51 rpne0 12408 . . . . . . . . . . . . 13 (𝑀 ∈ ℝ+𝑀 ≠ 0)
5251adantl 484 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 𝑀 ≠ 0)
5348, 50, 52redivcld 11470 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (𝐴 / 𝑀) ∈ ℝ)
54 0z 11995 . . . . . . . . . . 11 0 ∈ ℤ
55 flge 13178 . . . . . . . . . . 11 (((𝐴 / 𝑀) ∈ ℝ ∧ 0 ∈ ℤ) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5653, 54, 55sylancl 588 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → (0 ≤ (𝐴 / 𝑀) ↔ 0 ≤ (⌊‘(𝐴 / 𝑀))))
5747, 56mpbid 234 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → 0 ≤ (⌊‘(𝐴 / 𝑀)))
58 breq2 5072 . . . . . . . . 9 ((⌊‘(𝐴 / 𝑀)) = 𝑖 → (0 ≤ (⌊‘(𝐴 / 𝑀)) ↔ 0 ≤ 𝑖))
5957, 58syl5ibcom 247 . . . . . . . 8 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6059ad2antrr 724 . . . . . . 7 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → ((⌊‘(𝐴 / 𝑀)) = 𝑖 → 0 ≤ 𝑖))
6142, 60sylbid 242 . . . . . 6 ((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) → (𝐴 = ((𝑖 · 𝑀) + 𝐵) → 0 ≤ 𝑖))
6261imp 409 . . . . 5 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 0 ≤ 𝑖)
63 elnn0z 11997 . . . . 5 (𝑖 ∈ ℕ0 ↔ (𝑖 ∈ ℤ ∧ 0 ≤ 𝑖))
642, 62, 63sylanbrc 585 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝑖 ∈ ℕ0)
65 oveq1 7165 . . . . . . 7 (𝑘 = 𝑖 → (𝑘 · 𝑀) = (𝑖 · 𝑀))
6665oveq1d 7173 . . . . . 6 (𝑘 = 𝑖 → ((𝑘 · 𝑀) + 𝐵) = ((𝑖 · 𝑀) + 𝐵))
6766eqeq2d 2834 . . . . 5 (𝑘 = 𝑖 → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
6867adantl 484 . . . 4 ((((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) ∧ 𝑘 = 𝑖) → (𝐴 = ((𝑘 · 𝑀) + 𝐵) ↔ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
69 simpr 487 . . . 4 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7064, 68, 69rspcedvd 3628 . . 3 (((((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) ∧ 𝑖 ∈ ℤ) ∧ 𝐴 = ((𝑖 · 𝑀) + 𝐵)) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
71 nn0z 12008 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℤ)
72 modmuladdim 13285 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7371, 72sylan 582 . . . 4 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵)))
7473imp 409 . . 3 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑖 ∈ ℤ 𝐴 = ((𝑖 · 𝑀) + 𝐵))
7570, 74r19.29a 3291 . 2 (((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) ∧ (𝐴 mod 𝑀) = 𝐵) → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵))
7675ex 415 1 ((𝐴 ∈ ℕ0𝑀 ∈ ℝ+) → ((𝐴 mod 𝑀) = 𝐵 → ∃𝑘 ∈ ℕ0 𝐴 = ((𝑘 · 𝑀) + 𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1537  wcel 2114  wne 3018  wrex 3141   class class class wbr 5068  cfv 6357  (class class class)co 7158  cc 10537  cr 10538  0cc0 10539   + caddc 10542   · cmul 10544   < clt 10677  cle 10678  cmin 10872   / cdiv 11299  0cn0 11900  cz 11984  +crp 12392  cfl 13163   mod cmo 13240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-sup 8908  df-inf 8909  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-n0 11901  df-z 11985  df-uz 12247  df-rp 12393  df-ico 12747  df-fl 13165  df-mod 13241
This theorem is referenced by:  2lgslem3a1  25978  2lgslem3b1  25979  2lgslem3c1  25980  2lgslem3d1  25981
  Copyright terms: Public domain W3C validator