Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  modn0mul Structured version   Visualization version   GIF version

Theorem modn0mul 41600
Description: If an integer is not 0 modulo a positive integer, this integer must be the sum of the product of another integer and the modulus and a positive integer less than the modulus. (Contributed by AV, 7-Jun-2020.)
Assertion
Ref Expression
modn0mul ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑁,𝑦

Proof of Theorem modn0mul
StepHypRef Expression
1 zre 11325 . . . . . . 7 (𝐴 ∈ ℤ → 𝐴 ∈ ℝ)
21adantr 481 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝐴 ∈ ℝ)
3 nnre 10971 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ)
43adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ∈ ℝ)
5 nnne0 10997 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ≠ 0)
65adantl 482 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → 𝑁 ≠ 0)
72, 4, 6redivcld 10797 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 / 𝑁) ∈ ℝ)
87flcld 12539 . . . 4 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
98adantr 481 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (⌊‘(𝐴 / 𝑁)) ∈ ℤ)
10 zmodfzo 12633 . . . . 5 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 mod 𝑁) ∈ (0..^𝑁))
1110anim1i 591 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
12 fzo1fzo0n0 12459 . . . 4 ((𝐴 mod 𝑁) ∈ (1..^𝑁) ↔ ((𝐴 mod 𝑁) ∈ (0..^𝑁) ∧ (𝐴 mod 𝑁) ≠ 0))
1311, 12sylibr 224 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 mod 𝑁) ∈ (1..^𝑁))
14 nnrp 11786 . . . . . . 7 (𝑁 ∈ ℕ → 𝑁 ∈ ℝ+)
151, 14anim12i 589 . . . . . 6 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
1615adantr 481 . . . . 5 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+))
17 flpmodeq 12613 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝑁 ∈ ℝ+) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1816, 17syl 17 . . . 4 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)) = 𝐴)
1918eqcomd 2627 . . 3 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
20 oveq1 6611 . . . . . 6 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝑥 · 𝑁) = ((⌊‘(𝐴 / 𝑁)) · 𝑁))
2120oveq1d 6619 . . . . 5 (𝑥 = (⌊‘(𝐴 / 𝑁)) → ((𝑥 · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦))
2221eqeq2d 2631 . . . 4 (𝑥 = (⌊‘(𝐴 / 𝑁)) → (𝐴 = ((𝑥 · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦)))
23 oveq2 6612 . . . . 5 (𝑦 = (𝐴 mod 𝑁) → (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁)))
2423eqeq2d 2631 . . . 4 (𝑦 = (𝐴 mod 𝑁) → (𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + 𝑦) ↔ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))))
2522, 24rspc2ev 3308 . . 3 (((⌊‘(𝐴 / 𝑁)) ∈ ℤ ∧ (𝐴 mod 𝑁) ∈ (1..^𝑁) ∧ 𝐴 = (((⌊‘(𝐴 / 𝑁)) · 𝑁) + (𝐴 mod 𝑁))) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
269, 13, 19, 25syl3anc 1323 . 2 (((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) ∧ (𝐴 mod 𝑁) ≠ 0) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦))
2726ex 450 1 ((𝐴 ∈ ℤ ∧ 𝑁 ∈ ℕ) → ((𝐴 mod 𝑁) ≠ 0 → ∃𝑥 ∈ ℤ ∃𝑦 ∈ (1..^𝑁)𝐴 = ((𝑥 · 𝑁) + 𝑦)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wne 2790  wrex 2908  cfv 5847  (class class class)co 6604  cr 9879  0cc0 9880  1c1 9881   + caddc 9883   · cmul 9885   / cdiv 10628  cn 10964  cz 11321  +crp 11776  ..^cfzo 12406  cfl 12531   mod cmo 12608
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-rp 11777  df-fz 12269  df-fzo 12407  df-fl 12533  df-mod 12609
This theorem is referenced by:  m1modmmod  41601
  Copyright terms: Public domain W3C validator