MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monfval Structured version   Visualization version   GIF version

Theorem monfval 16313
Description: Definition of a monomorphism in a category. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
ismon.b 𝐵 = (Base‘𝐶)
ismon.h 𝐻 = (Hom ‘𝐶)
ismon.o · = (comp‘𝐶)
ismon.s 𝑀 = (Mono‘𝐶)
ismon.c (𝜑𝐶 ∈ Cat)
Assertion
Ref Expression
monfval (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦,𝑧,𝐵   𝜑,𝑓,𝑔,𝑥,𝑦,𝑧   𝐶,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝐻,𝑔,𝑥,𝑦,𝑧   · ,𝑓,𝑔,𝑥,𝑦,𝑧   𝑓,𝑀
Allowed substitution hints:   𝑀(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem monfval
Dummy variables 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ismon.s . 2 𝑀 = (Mono‘𝐶)
2 ismon.c . . 3 (𝜑𝐶 ∈ Cat)
3 fvex 6158 . . . . . 6 (Base‘𝑐) ∈ V
43a1i 11 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) ∈ V)
5 fveq2 6148 . . . . . 6 (𝑐 = 𝐶 → (Base‘𝑐) = (Base‘𝐶))
6 ismon.b . . . . . 6 𝐵 = (Base‘𝐶)
75, 6syl6eqr 2673 . . . . 5 (𝑐 = 𝐶 → (Base‘𝑐) = 𝐵)
8 fvex 6158 . . . . . . 7 (Hom ‘𝑐) ∈ V
98a1i 11 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) ∈ V)
10 simpl 473 . . . . . . . 8 ((𝑐 = 𝐶𝑏 = 𝐵) → 𝑐 = 𝐶)
1110fveq2d 6152 . . . . . . 7 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = (Hom ‘𝐶))
12 ismon.h . . . . . . 7 𝐻 = (Hom ‘𝐶)
1311, 12syl6eqr 2673 . . . . . 6 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) = 𝐻)
14 simplr 791 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑏 = 𝐵)
15 simpr 477 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → = 𝐻)
1615oveqd 6621 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑦) = (𝑥𝐻𝑦))
1715oveqd 6621 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑧𝑥) = (𝑧𝐻𝑥))
18 simpll 789 . . . . . . . . . . . . . . . 16 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → 𝑐 = 𝐶)
1918fveq2d 6152 . . . . . . . . . . . . . . 15 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = (comp‘𝐶))
20 ismon.o . . . . . . . . . . . . . . 15 · = (comp‘𝐶)
2119, 20syl6eqr 2673 . . . . . . . . . . . . . 14 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (comp‘𝑐) = · )
2221oveqd 6621 . . . . . . . . . . . . 13 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦) = (⟨𝑧, 𝑥· 𝑦))
2322oveqd 6621 . . . . . . . . . . . 12 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔) = (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))
2417, 23mpteq12dv 4693 . . . . . . . . . . 11 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2524cnveqd 5258 . . . . . . . . . 10 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) = (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔)))
2625funeqd 5869 . . . . . . . . 9 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2714, 26raleqbidv 3141 . . . . . . . 8 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔)) ↔ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))))
2816, 27rabeqbidv 3181 . . . . . . 7 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))} = {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))})
2914, 14, 28mpt2eq123dv 6670 . . . . . 6 (((𝑐 = 𝐶𝑏 = 𝐵) ∧ = 𝐻) → (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
309, 13, 29csbied2 3542 . . . . 5 ((𝑐 = 𝐶𝑏 = 𝐵) → (Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
314, 7, 30csbied2 3542 . . . 4 (𝑐 = 𝐶(Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
32 df-mon 16311 . . . 4 Mono = (𝑐 ∈ Cat ↦ (Base‘𝑐) / 𝑏(Hom ‘𝑐) / (𝑥𝑏, 𝑦𝑏 ↦ {𝑓 ∈ (𝑥𝑦) ∣ ∀𝑧𝑏 Fun (𝑔 ∈ (𝑧𝑥) ↦ (𝑓(⟨𝑧, 𝑥⟩(comp‘𝑐)𝑦)𝑔))}))
33 fvex 6158 . . . . . 6 (Base‘𝐶) ∈ V
346, 33eqeltri 2694 . . . . 5 𝐵 ∈ V
3534, 34mpt2ex 7192 . . . 4 (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}) ∈ V
3631, 32, 35fvmpt 6239 . . 3 (𝐶 ∈ Cat → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
372, 36syl 17 . 2 (𝜑 → (Mono‘𝐶) = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
381, 37syl5eq 2667 1 (𝜑𝑀 = (𝑥𝐵, 𝑦𝐵 ↦ {𝑓 ∈ (𝑥𝐻𝑦) ∣ ∀𝑧𝐵 Fun (𝑔 ∈ (𝑧𝐻𝑥) ↦ (𝑓(⟨𝑧, 𝑥· 𝑦)𝑔))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  {crab 2911  Vcvv 3186  csb 3514  cop 4154  cmpt 4673  ccnv 5073  Fun wfun 5841  cfv 5847  (class class class)co 6604  cmpt2 6606  Basecbs 15781  Hom chom 15873  compcco 15874  Catccat 16246  Monocmon 16309
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-id 4989  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-1st 7113  df-2nd 7114  df-mon 16311
This theorem is referenced by:  ismon  16314  monpropd  16318
  Copyright terms: Public domain W3C validator