Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  monoords Structured version   Visualization version   GIF version

Theorem monoords 38972
Description: Ordering relation for a strictly monotonic sequence, increasing case. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
monoords.fk ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
monoords.flt ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
monoords.i (𝜑𝐼 ∈ (𝑀...𝑁))
monoords.j (𝜑𝐽 ∈ (𝑀...𝑁))
monoords.iltj (𝜑𝐼 < 𝐽)
Assertion
Ref Expression
monoords (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Distinct variable groups:   𝑘,𝐹   𝑘,𝐼   𝑘,𝐽   𝑘,𝑀   𝑘,𝑁   𝜑,𝑘

Proof of Theorem monoords
Dummy variable 𝑗 is distinct from all other variables.
StepHypRef Expression
1 monoords.i . . 3 (𝜑𝐼 ∈ (𝑀...𝑁))
21ancli 573 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀...𝑁)))
3 eleq1 2686 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐼 ∈ (𝑀...𝑁)))
43anbi2d 739 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐼 ∈ (𝑀...𝑁))))
5 fveq2 6148 . . . . . 6 (𝑘 = 𝐼 → (𝐹𝑘) = (𝐹𝐼))
65eleq1d 2683 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐼) ∈ ℝ))
74, 6imbi12d 334 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ)))
8 monoords.fk . . . 4 ((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ)
97, 8vtoclg 3252 . . 3 (𝐼 ∈ (𝑀...𝑁) → ((𝜑𝐼 ∈ (𝑀...𝑁)) → (𝐹𝐼) ∈ ℝ))
101, 2, 9sylc 65 . 2 (𝜑 → (𝐹𝐼) ∈ ℝ)
11 elfzel1 12283 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀 ∈ ℤ)
121, 11syl 17 . . . . . 6 (𝜑𝑀 ∈ ℤ)
13 elfzelz 12284 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝐼 ∈ ℤ)
141, 13syl 17 . . . . . 6 (𝜑𝐼 ∈ ℤ)
15 elfzle1 12286 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑀𝐼)
161, 15syl 17 . . . . . 6 (𝜑𝑀𝐼)
17 eluz2 11637 . . . . . 6 (𝐼 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝐼 ∈ ℤ ∧ 𝑀𝐼))
1812, 14, 16, 17syl3anbrc 1244 . . . . 5 (𝜑𝐼 ∈ (ℤ𝑀))
19 elfzuz2 12288 . . . . . . 7 (𝐼 ∈ (𝑀...𝑁) → 𝑁 ∈ (ℤ𝑀))
201, 19syl 17 . . . . . 6 (𝜑𝑁 ∈ (ℤ𝑀))
21 eluzelz 11641 . . . . . 6 (𝑁 ∈ (ℤ𝑀) → 𝑁 ∈ ℤ)
2220, 21syl 17 . . . . 5 (𝜑𝑁 ∈ ℤ)
2314zred 11426 . . . . . 6 (𝜑𝐼 ∈ ℝ)
24 monoords.j . . . . . . . 8 (𝜑𝐽 ∈ (𝑀...𝑁))
25 elfzelz 12284 . . . . . . . 8 (𝐽 ∈ (𝑀...𝑁) → 𝐽 ∈ ℤ)
2624, 25syl 17 . . . . . . 7 (𝜑𝐽 ∈ ℤ)
2726zred 11426 . . . . . 6 (𝜑𝐽 ∈ ℝ)
2822zred 11426 . . . . . 6 (𝜑𝑁 ∈ ℝ)
29 monoords.iltj . . . . . 6 (𝜑𝐼 < 𝐽)
30 elfzle2 12287 . . . . . . 7 (𝐽 ∈ (𝑀...𝑁) → 𝐽𝑁)
3124, 30syl 17 . . . . . 6 (𝜑𝐽𝑁)
3223, 27, 28, 29, 31ltletrd 10141 . . . . 5 (𝜑𝐼 < 𝑁)
33 elfzo2 12414 . . . . 5 (𝐼 ∈ (𝑀..^𝑁) ↔ (𝐼 ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ 𝐼 < 𝑁))
3418, 22, 32, 33syl3anbrc 1244 . . . 4 (𝜑𝐼 ∈ (𝑀..^𝑁))
35 fzofzp1 12506 . . . 4 (𝐼 ∈ (𝑀..^𝑁) → (𝐼 + 1) ∈ (𝑀...𝑁))
3634, 35syl 17 . . 3 (𝜑 → (𝐼 + 1) ∈ (𝑀...𝑁))
3736ancli 573 . . 3 (𝜑 → (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)))
38 eleq1 2686 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝑘 ∈ (𝑀...𝑁) ↔ (𝐼 + 1) ∈ (𝑀...𝑁)))
3938anbi2d 739 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁))))
40 fveq2 6148 . . . . . 6 (𝑘 = (𝐼 + 1) → (𝐹𝑘) = (𝐹‘(𝐼 + 1)))
4140eleq1d 2683 . . . . 5 (𝑘 = (𝐼 + 1) → ((𝐹𝑘) ∈ ℝ ↔ (𝐹‘(𝐼 + 1)) ∈ ℝ))
4239, 41imbi12d 334 . . . 4 (𝑘 = (𝐼 + 1) → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ)))
4342, 8vtoclg 3252 . . 3 ((𝐼 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝐼 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝐼 + 1)) ∈ ℝ))
4436, 37, 43sylc 65 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ∈ ℝ)
4524ancli 573 . . 3 (𝜑 → (𝜑𝐽 ∈ (𝑀...𝑁)))
46 eleq1 2686 . . . . . 6 (𝑘 = 𝐽 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝐽 ∈ (𝑀...𝑁)))
4746anbi2d 739 . . . . 5 (𝑘 = 𝐽 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝐽 ∈ (𝑀...𝑁))))
48 fveq2 6148 . . . . . 6 (𝑘 = 𝐽 → (𝐹𝑘) = (𝐹𝐽))
4948eleq1d 2683 . . . . 5 (𝑘 = 𝐽 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝐽) ∈ ℝ))
5047, 49imbi12d 334 . . . 4 (𝑘 = 𝐽 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ)))
5150, 8vtoclg 3252 . . 3 (𝐽 ∈ (𝑀...𝑁) → ((𝜑𝐽 ∈ (𝑀...𝑁)) → (𝐹𝐽) ∈ ℝ))
5224, 45, 51sylc 65 . 2 (𝜑 → (𝐹𝐽) ∈ ℝ)
5334ancli 573 . . 3 (𝜑 → (𝜑𝐼 ∈ (𝑀..^𝑁)))
54 eleq1 2686 . . . . . 6 (𝑘 = 𝐼 → (𝑘 ∈ (𝑀..^𝑁) ↔ 𝐼 ∈ (𝑀..^𝑁)))
5554anbi2d 739 . . . . 5 (𝑘 = 𝐼 → ((𝜑𝑘 ∈ (𝑀..^𝑁)) ↔ (𝜑𝐼 ∈ (𝑀..^𝑁))))
56 oveq1 6611 . . . . . . 7 (𝑘 = 𝐼 → (𝑘 + 1) = (𝐼 + 1))
5756fveq2d 6152 . . . . . 6 (𝑘 = 𝐼 → (𝐹‘(𝑘 + 1)) = (𝐹‘(𝐼 + 1)))
585, 57breq12d 4626 . . . . 5 (𝑘 = 𝐼 → ((𝐹𝑘) < (𝐹‘(𝑘 + 1)) ↔ (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
5955, 58imbi12d 334 . . . 4 (𝑘 = 𝐼 → (((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1))) ↔ ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))))
60 monoords.flt . . . 4 ((𝜑𝑘 ∈ (𝑀..^𝑁)) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
6159, 60vtoclg 3252 . . 3 (𝐼 ∈ (𝑀..^𝑁) → ((𝜑𝐼 ∈ (𝑀..^𝑁)) → (𝐹𝐼) < (𝐹‘(𝐼 + 1))))
6234, 53, 61sylc 65 . 2 (𝜑 → (𝐹𝐼) < (𝐹‘(𝐼 + 1)))
6314peano2zd 11429 . . . 4 (𝜑 → (𝐼 + 1) ∈ ℤ)
64 zltp1le 11371 . . . . . 6 ((𝐼 ∈ ℤ ∧ 𝐽 ∈ ℤ) → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6514, 26, 64syl2anc 692 . . . . 5 (𝜑 → (𝐼 < 𝐽 ↔ (𝐼 + 1) ≤ 𝐽))
6629, 65mpbid 222 . . . 4 (𝜑 → (𝐼 + 1) ≤ 𝐽)
67 eluz2 11637 . . . 4 (𝐽 ∈ (ℤ‘(𝐼 + 1)) ↔ ((𝐼 + 1) ∈ ℤ ∧ 𝐽 ∈ ℤ ∧ (𝐼 + 1) ≤ 𝐽))
6863, 26, 66, 67syl3anbrc 1244 . . 3 (𝜑𝐽 ∈ (ℤ‘(𝐼 + 1)))
6912adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℤ)
7022adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℤ)
71 elfzelz 12284 . . . . . . . 8 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘 ∈ ℤ)
7271adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℤ)
7369, 70, 723jca 1240 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ))
7469zred 11426 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 ∈ ℝ)
7572zred 11426 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ ℝ)
7663zred 11426 . . . . . . . . 9 (𝜑 → (𝐼 + 1) ∈ ℝ)
7776adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ∈ ℝ)
7823adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 ∈ ℝ)
7916adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝐼)
8078ltp1d 10898 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐼 < (𝐼 + 1))
8174, 78, 77, 79, 80lelttrd 10139 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < (𝐼 + 1))
82 elfzle1 12286 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...𝐽) → (𝐼 + 1) ≤ 𝑘)
8382adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐼 + 1) ≤ 𝑘)
8474, 77, 75, 81, 83ltletrd 10141 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀 < 𝑘)
8574, 75, 84ltled 10129 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑀𝑘)
8627adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽 ∈ ℝ)
8770zred 11426 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑁 ∈ ℝ)
88 elfzle2 12287 . . . . . . . 8 (𝑘 ∈ ((𝐼 + 1)...𝐽) → 𝑘𝐽)
8988adantl 482 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝐽)
9031adantr 481 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝐽𝑁)
9175, 86, 87, 89, 90letrd 10138 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘𝑁)
9273, 85, 91jca32 557 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀𝑘𝑘𝑁)))
93 elfz2 12275 . . . . 5 (𝑘 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀𝑘𝑘𝑁)))
9492, 93sylibr 224 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → 𝑘 ∈ (𝑀...𝑁))
9594, 8syldan 487 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...𝐽)) → (𝐹𝑘) ∈ ℝ)
9612adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℤ)
9722adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℤ)
98 elfzelz 12284 . . . . . . . . 9 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ∈ ℤ)
9998adantl 482 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℤ)
10096, 97, 993jca 1240 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ))
10196zred 11426 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 ∈ ℝ)
10299zred 11426 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ ℝ)
10376adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ∈ ℝ)
10412zred 11426 . . . . . . . . . . 11 (𝜑𝑀 ∈ ℝ)
10523ltp1d 10898 . . . . . . . . . . 11 (𝜑𝐼 < (𝐼 + 1))
106104, 23, 76, 16, 105lelttrd 10139 . . . . . . . . . 10 (𝜑𝑀 < (𝐼 + 1))
107106adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < (𝐼 + 1))
108 elfzle1 12286 . . . . . . . . . 10 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → (𝐼 + 1) ≤ 𝑘)
109108adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐼 + 1) ≤ 𝑘)
110101, 103, 102, 107, 109ltletrd 10141 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀 < 𝑘)
111101, 102, 110ltled 10129 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑀𝑘)
11297zred 11426 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑁 ∈ ℝ)
113 peano2rem 10292 . . . . . . . . . . 11 (𝐽 ∈ ℝ → (𝐽 − 1) ∈ ℝ)
11427, 113syl 17 . . . . . . . . . 10 (𝜑 → (𝐽 − 1) ∈ ℝ)
115114adantr 481 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ∈ ℝ)
116 elfzle2 12287 . . . . . . . . . 10 (𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1)) → 𝑘 ≤ (𝐽 − 1))
117116adantl 482 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝐽 − 1))
11827adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽 ∈ ℝ)
119118ltm1d 10900 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝐽)
12031adantr 481 . . . . . . . . . 10 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝐽𝑁)
121115, 118, 112, 119, 120ltletrd 10141 . . . . . . . . 9 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) < 𝑁)
122102, 115, 112, 117, 121lelttrd 10139 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 < 𝑁)
123102, 112, 122ltled 10129 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘𝑁)
124100, 111, 123jca32 557 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀𝑘𝑘𝑁)))
125124, 93sylibr 224 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...𝑁))
126125, 8syldan 487 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ∈ ℝ)
127 peano2zm 11364 . . . . . . . . 9 (𝑁 ∈ ℤ → (𝑁 − 1) ∈ ℤ)
12897, 127syl 17 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℤ)
12996, 128, 993jca 1240 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑘 ∈ ℤ))
130128zred 11426 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝑁 − 1) ∈ ℝ)
131 1red 9999 . . . . . . . . . 10 (𝜑 → 1 ∈ ℝ)
13227, 28, 131, 31lesub1dd 10587 . . . . . . . . 9 (𝜑 → (𝐽 − 1) ≤ (𝑁 − 1))
133132adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐽 − 1) ≤ (𝑁 − 1))
134102, 115, 130, 117, 133letrd 10138 . . . . . . 7 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ≤ (𝑁 − 1))
135129, 111, 134jca32 557 . . . . . 6 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀𝑘𝑘 ≤ (𝑁 − 1))))
136 elfz2 12275 . . . . . 6 (𝑘 ∈ (𝑀...(𝑁 − 1)) ↔ ((𝑀 ∈ ℤ ∧ (𝑁 − 1) ∈ ℤ ∧ 𝑘 ∈ ℤ) ∧ (𝑀𝑘𝑘 ≤ (𝑁 − 1))))
137135, 136sylibr 224 . . . . 5 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
138 simpr 477 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀...(𝑁 − 1)))
139 fzoval 12412 . . . . . . . . . . 11 (𝑁 ∈ ℤ → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
14022, 139syl 17 . . . . . . . . . 10 (𝜑 → (𝑀..^𝑁) = (𝑀...(𝑁 − 1)))
141140eqcomd 2627 . . . . . . . . 9 (𝜑 → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
142141adantr 481 . . . . . . . 8 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑀...(𝑁 − 1)) = (𝑀..^𝑁))
143138, 142eleqtrd 2700 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝑘 ∈ (𝑀..^𝑁))
144 fzofzp1 12506 . . . . . . 7 (𝑘 ∈ (𝑀..^𝑁) → (𝑘 + 1) ∈ (𝑀...𝑁))
145143, 144syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝑘 + 1) ∈ (𝑀...𝑁))
146 simpl 473 . . . . . . 7 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → 𝜑)
147146, 145jca 554 . . . . . 6 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)))
148 eleq1 2686 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝑗 ∈ (𝑀...𝑁) ↔ (𝑘 + 1) ∈ (𝑀...𝑁)))
149148anbi2d 739 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝜑𝑗 ∈ (𝑀...𝑁)) ↔ (𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁))))
150 fveq2 6148 . . . . . . . . 9 (𝑗 = (𝑘 + 1) → (𝐹𝑗) = (𝐹‘(𝑘 + 1)))
151150eleq1d 2683 . . . . . . . 8 (𝑗 = (𝑘 + 1) → ((𝐹𝑗) ∈ ℝ ↔ (𝐹‘(𝑘 + 1)) ∈ ℝ))
152149, 151imbi12d 334 . . . . . . 7 (𝑗 = (𝑘 + 1) → (((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ) ↔ ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ)))
153 eleq1 2686 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝑘 ∈ (𝑀...𝑁) ↔ 𝑗 ∈ (𝑀...𝑁)))
154153anbi2d 739 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝜑𝑘 ∈ (𝑀...𝑁)) ↔ (𝜑𝑗 ∈ (𝑀...𝑁))))
155 fveq2 6148 . . . . . . . . . 10 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
156155eleq1d 2683 . . . . . . . . 9 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑗) ∈ ℝ))
157154, 156imbi12d 334 . . . . . . . 8 (𝑘 = 𝑗 → (((𝜑𝑘 ∈ (𝑀...𝑁)) → (𝐹𝑘) ∈ ℝ) ↔ ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)))
158157, 8chvarv 2262 . . . . . . 7 ((𝜑𝑗 ∈ (𝑀...𝑁)) → (𝐹𝑗) ∈ ℝ)
159152, 158vtoclg 3252 . . . . . 6 ((𝑘 + 1) ∈ (𝑀...𝑁) → ((𝜑 ∧ (𝑘 + 1) ∈ (𝑀...𝑁)) → (𝐹‘(𝑘 + 1)) ∈ ℝ))
160145, 147, 159sylc 65 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
161137, 160syldan 487 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹‘(𝑘 + 1)) ∈ ℝ)
162143, 60syldan 487 . . . . 5 ((𝜑𝑘 ∈ (𝑀...(𝑁 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
163137, 162syldan 487 . . . 4 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) < (𝐹‘(𝑘 + 1)))
164126, 161, 163ltled 10129 . . 3 ((𝜑𝑘 ∈ ((𝐼 + 1)...(𝐽 − 1))) → (𝐹𝑘) ≤ (𝐹‘(𝑘 + 1)))
16568, 95, 164monoord 12771 . 2 (𝜑 → (𝐹‘(𝐼 + 1)) ≤ (𝐹𝐽))
16610, 44, 52, 62, 165ltletrd 10141 1 (𝜑 → (𝐹𝐼) < (𝐹𝐽))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987   class class class wbr 4613  cfv 5847  (class class class)co 6604  cr 9879  1c1 9881   + caddc 9883   < clt 10018  cle 10019  cmin 10210  cz 11321  cuz 11631  ...cfz 12268  ..^cfzo 12406
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407
This theorem is referenced by:  fourierdlem34  39662
  Copyright terms: Public domain W3C validator