MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  monpropd Structured version   Visualization version   GIF version

Theorem monpropd 16313
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same monomorphisms. (Contributed by Mario Carneiro, 3-Jan-2017.)
Hypotheses
Ref Expression
monpropd.3 (𝜑 → (Homf𝐶) = (Homf𝐷))
monpropd.4 (𝜑 → (compf𝐶) = (compf𝐷))
monpropd.c (𝜑𝐶 ∈ Cat)
monpropd.d (𝜑𝐷 ∈ Cat)
Assertion
Ref Expression
monpropd (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))

Proof of Theorem monpropd
Dummy variables 𝑎 𝑏 𝑐 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2626 . . . . . . . . . . . 12 (Base‘𝐶) = (Base‘𝐶)
2 eqid 2626 . . . . . . . . . . . 12 (Hom ‘𝐶) = (Hom ‘𝐶)
3 eqid 2626 . . . . . . . . . . . 12 (Hom ‘𝐷) = (Hom ‘𝐷)
4 monpropd.3 . . . . . . . . . . . . . 14 (𝜑 → (Homf𝐶) = (Homf𝐷))
54ad2antrr 761 . . . . . . . . . . . . 13 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
65ad2antrr 761 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Homf𝐶) = (Homf𝐷))
7 simpr 477 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑐 ∈ (Base‘𝐶))
8 simp-4r 806 . . . . . . . . . . . 12 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
91, 2, 3, 6, 7, 8homfeqval 16273 . . . . . . . . . . 11 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑐(Hom ‘𝐶)𝑎) = (𝑐(Hom ‘𝐷)𝑎))
10 eqid 2626 . . . . . . . . . . . 12 (comp‘𝐶) = (comp‘𝐶)
11 eqid 2626 . . . . . . . . . . . 12 (comp‘𝐷) = (comp‘𝐷)
124ad5antr 769 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (Homf𝐶) = (Homf𝐷))
13 monpropd.4 . . . . . . . . . . . . 13 (𝜑 → (compf𝐶) = (compf𝐷))
1413ad5antr 769 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (compf𝐶) = (compf𝐷))
15 simplr 791 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑐 ∈ (Base‘𝐶))
16 simp-5r 808 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑎 ∈ (Base‘𝐶))
17 simp-4r 806 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑏 ∈ (Base‘𝐶))
18 simpr 477 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎))
19 simpllr 798 . . . . . . . . . . . 12 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏))
201, 2, 10, 11, 12, 14, 15, 16, 17, 18, 19comfeqval 16284 . . . . . . . . . . 11 ((((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) ∧ 𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎)) → (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔) = (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))
219, 20mpteq12dva 4697 . . . . . . . . . 10 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2221cnveqd 5263 . . . . . . . . 9 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) = (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)))
2322funeqd 5871 . . . . . . . 8 (((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) ∧ 𝑐 ∈ (Base‘𝐶)) → (Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2423ralbidva 2984 . . . . . . 7 ((((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) ∧ 𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
2524rabbidva 3181 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
26 simplr 791 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑎 ∈ (Base‘𝐶))
27 simpr 477 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → 𝑏 ∈ (Base‘𝐶))
281, 2, 3, 5, 26, 27homfeqval 16273 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (𝑎(Hom ‘𝐶)𝑏) = (𝑎(Hom ‘𝐷)𝑏))
294homfeqbas 16272 . . . . . . . . 9 (𝜑 → (Base‘𝐶) = (Base‘𝐷))
3029ad2antrr 761 . . . . . . . 8 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (Base‘𝐶) = (Base‘𝐷))
3130raleqdv 3138 . . . . . . 7 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → (∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔)) ↔ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))))
3228, 31rabeqbidv 3186 . . . . . 6 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3325, 32eqtrd 2660 . . . . 5 (((𝜑𝑎 ∈ (Base‘𝐶)) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
34333impa 1256 . . . 4 ((𝜑𝑎 ∈ (Base‘𝐶) ∧ 𝑏 ∈ (Base‘𝐶)) → {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))} = {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))})
3534mpt2eq3dva 6673 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
36 mpt2eq12 6669 . . . 4 (((Base‘𝐶) = (Base‘𝐷) ∧ (Base‘𝐶) = (Base‘𝐷)) → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3729, 29, 36syl2anc 692 . . 3 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
3835, 37eqtrd 2660 . 2 (𝜑 → (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
39 eqid 2626 . . 3 (Mono‘𝐶) = (Mono‘𝐶)
40 monpropd.c . . 3 (𝜑𝐶 ∈ Cat)
411, 2, 10, 39, 40monfval 16308 . 2 (𝜑 → (Mono‘𝐶) = (𝑎 ∈ (Base‘𝐶), 𝑏 ∈ (Base‘𝐶) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐶)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐶)Fun (𝑔 ∈ (𝑐(Hom ‘𝐶)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐶)𝑏)𝑔))}))
42 eqid 2626 . . 3 (Base‘𝐷) = (Base‘𝐷)
43 eqid 2626 . . 3 (Mono‘𝐷) = (Mono‘𝐷)
44 monpropd.d . . 3 (𝜑𝐷 ∈ Cat)
4542, 3, 11, 43, 44monfval 16308 . 2 (𝜑 → (Mono‘𝐷) = (𝑎 ∈ (Base‘𝐷), 𝑏 ∈ (Base‘𝐷) ↦ {𝑓 ∈ (𝑎(Hom ‘𝐷)𝑏) ∣ ∀𝑐 ∈ (Base‘𝐷)Fun (𝑔 ∈ (𝑐(Hom ‘𝐷)𝑎) ↦ (𝑓(⟨𝑐, 𝑎⟩(comp‘𝐷)𝑏)𝑔))}))
4638, 41, 453eqtr4d 2670 1 (𝜑 → (Mono‘𝐶) = (Mono‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1992  wral 2912  {crab 2916  cop 4159  cmpt 4678  ccnv 5078  Fun wfun 5844  cfv 5850  (class class class)co 6605  cmpt2 6607  Basecbs 15776  Hom chom 15868  compcco 15869  Catccat 16241  Homf chomf 16243  compfccomf 16244  Monocmon 16304
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1841  ax-6 1890  ax-7 1937  ax-8 1994  ax-9 2001  ax-10 2021  ax-11 2036  ax-12 2049  ax-13 2250  ax-ext 2606  ax-rep 4736  ax-sep 4746  ax-nul 4754  ax-pow 4808  ax-pr 4872  ax-un 6903
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1883  df-eu 2478  df-mo 2479  df-clab 2613  df-cleq 2619  df-clel 2622  df-nfc 2756  df-ne 2797  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3193  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3897  df-if 4064  df-pw 4137  df-sn 4154  df-pr 4156  df-op 4160  df-uni 4408  df-iun 4492  df-br 4619  df-opab 4679  df-mpt 4680  df-id 4994  df-xp 5085  df-rel 5086  df-cnv 5087  df-co 5088  df-dm 5089  df-rn 5090  df-res 5091  df-ima 5092  df-iota 5813  df-fun 5852  df-fn 5853  df-f 5854  df-f1 5855  df-fo 5856  df-f1o 5857  df-fv 5858  df-ov 6608  df-oprab 6609  df-mpt2 6610  df-1st 7116  df-2nd 7117  df-homf 16247  df-comf 16248  df-mon 16306
This theorem is referenced by:  oppcepi  16315
  Copyright terms: Public domain W3C validator