MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moop2 Structured version   Visualization version   GIF version

Theorem moop2 5383
Description: "At most one" property of an ordered pair. (Contributed by NM, 11-Apr-2004.) (Revised by Mario Carneiro, 26-Apr-2015.)
Hypothesis
Ref Expression
moop2.1 𝐵 ∈ V
Assertion
Ref Expression
moop2 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem moop2
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqtr2 2839 . . . 4 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
2 moop2.1 . . . . . 6 𝐵 ∈ V
3 vex 3495 . . . . . 6 𝑥 ∈ V
42, 3opth 5359 . . . . 5 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ ↔ (𝐵 = 𝑦 / 𝑥𝐵𝑥 = 𝑦))
54simprbi 497 . . . 4 (⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩ → 𝑥 = 𝑦)
61, 5syl 17 . . 3 ((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
76gen2 1788 . 2 𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦)
8 nfcsb1v 3904 . . . . 5 𝑥𝑦 / 𝑥𝐵
9 nfcv 2974 . . . . 5 𝑥𝑦
108, 9nfop 4811 . . . 4 𝑥𝑦 / 𝑥𝐵, 𝑦
1110nfeq2 2992 . . 3 𝑥 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦
12 csbeq1a 3894 . . . . 5 (𝑥 = 𝑦𝐵 = 𝑦 / 𝑥𝐵)
13 id 22 . . . . 5 (𝑥 = 𝑦𝑥 = 𝑦)
1412, 13opeq12d 4803 . . . 4 (𝑥 = 𝑦 → ⟨𝐵, 𝑥⟩ = ⟨𝑦 / 𝑥𝐵, 𝑦⟩)
1514eqeq2d 2829 . . 3 (𝑥 = 𝑦 → (𝐴 = ⟨𝐵, 𝑥⟩ ↔ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩))
1611, 15mo4f 2644 . 2 (∃*𝑥 𝐴 = ⟨𝐵, 𝑥⟩ ↔ ∀𝑥𝑦((𝐴 = ⟨𝐵, 𝑥⟩ ∧ 𝐴 = ⟨𝑦 / 𝑥𝐵, 𝑦⟩) → 𝑥 = 𝑦))
177, 16mpbir 232 1 ∃*𝑥 𝐴 = ⟨𝐵, 𝑥
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1526   = wceq 1528  wcel 2105  ∃*wmo 2613  Vcvv 3492  csb 3880  cop 4563
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pr 5320
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-nul 4289  df-if 4464  df-sn 4558  df-pr 4560  df-op 4564
This theorem is referenced by:  euop2  5393
  Copyright terms: Public domain W3C validator