Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopick2 Structured version   Visualization version   GIF version

Theorem mopick2 2678
 Description: "At most one" can show the existence of a common value. In this case we can infer existence of conjunction from a conjunction of existence, and it is one way to achieve the converse of 19.40 1946. (Contributed by NM, 5-Apr-2004.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
mopick2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜑𝜓𝜒))

Proof of Theorem mopick2
StepHypRef Expression
1 nfmo1 2618 . . . 4 𝑥∃*𝑥𝜑
2 nfe1 2176 . . . 4 𝑥𝑥(𝜑𝜓)
31, 2nfan 1977 . . 3 𝑥(∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓))
4 mopick 2673 . . . . . 6 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑𝜓))
54ancld 577 . . . . 5 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (𝜑 → (𝜑𝜓)))
65anim1d 589 . . . 4 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ((𝜑𝜒) → ((𝜑𝜓) ∧ 𝜒)))
7 df-3an 1074 . . . 4 ((𝜑𝜓𝜒) ↔ ((𝜑𝜓) ∧ 𝜒))
86, 7syl6ibr 242 . . 3 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → ((𝜑𝜒) → (𝜑𝜓𝜒)))
93, 8eximd 2232 . 2 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓)) → (∃𝑥(𝜑𝜒) → ∃𝑥(𝜑𝜓𝜒)))
1093impia 1110 1 ((∃*𝑥𝜑 ∧ ∃𝑥(𝜑𝜓) ∧ ∃𝑥(𝜑𝜒)) → ∃𝑥(𝜑𝜓𝜒))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   ∧ w3a 1072  ∃wex 1853  ∃*wmo 2608 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-10 2168  ax-11 2183  ax-12 2196 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-eu 2611  df-mo 2612 This theorem is referenced by:  moantr  34468
 Copyright terms: Public domain W3C validator