MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mopnuni Structured version   Visualization version   GIF version

Theorem mopnuni 22156
Description: The union of all open sets in a metric space is its underlying set. (Contributed by NM, 4-Sep-2006.) (Revised by Mario Carneiro, 12-Nov-2013.)
Hypothesis
Ref Expression
mopnval.1 𝐽 = (MetOpen‘𝐷)
Assertion
Ref Expression
mopnuni (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)

Proof of Theorem mopnuni
StepHypRef Expression
1 mopnval.1 . . 3 𝐽 = (MetOpen‘𝐷)
21mopntopon 22154 . 2 (𝐷 ∈ (∞Met‘𝑋) → 𝐽 ∈ (TopOn‘𝑋))
3 toponuni 20642 . 2 (𝐽 ∈ (TopOn‘𝑋) → 𝑋 = 𝐽)
42, 3syl 17 1 (𝐷 ∈ (∞Met‘𝑋) → 𝑋 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1480  wcel 1987   cuni 4402  cfv 5847  ∞Metcxmt 19650  MetOpencmopn 19655  TopOnctopon 20618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957  ax-pre-sup 9958
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rmo 2915  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-en 7900  df-dom 7901  df-sdom 7902  df-sup 8292  df-inf 8293  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-div 10629  df-nn 10965  df-2 11023  df-n0 11237  df-z 11322  df-uz 11632  df-q 11733  df-rp 11777  df-xneg 11890  df-xadd 11891  df-xmul 11892  df-topgen 16025  df-psmet 19657  df-xmet 19658  df-bl 19660  df-mopn 19661  df-top 20621  df-bases 20622  df-topon 20623
This theorem is referenced by:  mopnfss  22158  setsmstopn  22193  neibl  22216  lpbl  22218  blcld  22220  met1stc  22236  met2ndci  22237  met2ndc  22238  metcnpi  22259  metcnpi2  22260  metcnpi3  22261  tngtopn  22364  recld2  22525  xmetdcn  22549  metnrmlem1a  22569  metnrmlem1  22570  metnrmlem2  22571  metnrmlem3  22572  lebnumlem1  22668  lebnumlem3  22670  lebnum  22671  metelcls  23011  metcld  23012  flimcfil  23020  cmetss  23021  cmpcmet  23024  bcthlem2  23030  bcthlem4  23032  bcthlem5  23033  bcth3  23036  heicant  33076  heibor1lem  33240  heibor1  33241  heiborlem3  33244  heiborlem8  33249  heiborlem10  33251  heibor  33252
  Copyright terms: Public domain W3C validator