![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mormo | Structured version Visualization version GIF version |
Description: Unrestricted "at most one" implies restricted "at most one". (Contributed by NM, 16-Jun-2017.) |
Ref | Expression |
---|---|
mormo | ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | moan 2662 | . 2 ⊢ (∃*𝑥𝜑 → ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | df-rmo 3058 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
3 | 1, 2 | sylibr 224 | 1 ⊢ (∃*𝑥𝜑 → ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 ∃*wmo 2608 ∃*wrmo 3053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-10 2168 ax-12 2196 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-ex 1854 df-nf 1859 df-eu 2611 df-mo 2612 df-rmo 3058 |
This theorem is referenced by: reueq 3545 reusv1 5015 reusv1OLD 5016 brdom4 9544 phpreu 33706 |
Copyright terms: Public domain | W3C validator |