MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mosubop Structured version   Visualization version   GIF version

Theorem mosubop 4943
Description: "At most one" remains true inside ordered pair quantification. (Contributed by NM, 28-May-1995.)
Hypothesis
Ref Expression
mosubop.1 ∃*𝑥𝜑
Assertion
Ref Expression
mosubop ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
Distinct variable group:   𝑥,𝑦,𝑧,𝐴
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem mosubop
StepHypRef Expression
1 mosubop.1 . . 3 ∃*𝑥𝜑
21gen2 1720 . 2 𝑦𝑧∃*𝑥𝜑
3 mosubopt 4942 . 2 (∀𝑦𝑧∃*𝑥𝜑 → ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑))
42, 3ax-mp 5 1 ∃*𝑥𝑦𝑧(𝐴 = ⟨𝑦, 𝑧⟩ ∧ 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wa 384  wal 1478   = wceq 1480  wex 1701  ∃*wmo 2470  cop 4161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-rab 2917  df-v 3192  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-nul 3898  df-if 4065  df-sn 4156  df-pr 4158  df-op 4162
This theorem is referenced by:  ov3  6762  ov6g  6763  oprabex3  7117  axaddf  9926  axmulf  9927
  Copyright terms: Public domain W3C validator