MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  motcgrg Structured version   Visualization version   GIF version

Theorem motcgrg 25339
Description: Property of a motion: distances are preserved. (Contributed by Thierry Arnoux, 15-Dec-2019.)
Hypotheses
Ref Expression
ismot.p 𝑃 = (Base‘𝐺)
ismot.m = (dist‘𝐺)
motgrp.1 (𝜑𝐺𝑉)
motgrp.i 𝐼 = {⟨(Base‘ndx), (𝐺Ismt𝐺)⟩, ⟨(+g‘ndx), (𝑓 ∈ (𝐺Ismt𝐺), 𝑔 ∈ (𝐺Ismt𝐺) ↦ (𝑓𝑔))⟩}
motcgrg.r = (cgrG‘𝐺)
motcgrg.t (𝜑𝑇 ∈ Word 𝑃)
motcgrg.f (𝜑𝐹 ∈ (𝐺Ismt𝐺))
Assertion
Ref Expression
motcgrg (𝜑 → (𝐹𝑇) 𝑇)
Distinct variable groups:   𝑓,𝐺,𝑔   𝑓,𝐼,𝑔   𝑃,𝑓,𝑔   𝜑,𝑓,𝑔
Allowed substitution hints:   (𝑓,𝑔)   𝑇(𝑓,𝑔)   𝐹(𝑓,𝑔)   (𝑓,𝑔)   𝑉(𝑓,𝑔)

Proof of Theorem motcgrg
Dummy variables 𝑎 𝑏 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpr 477 . . . . . . . 8 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝑇:(0..^𝑛)⟶𝑃)
21adantr 481 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑇:(0..^𝑛)⟶𝑃)
3 simprl 793 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ dom (𝐹𝑇))
4 ismot.p . . . . . . . . . . . . . 14 𝑃 = (Base‘𝐺)
5 ismot.m . . . . . . . . . . . . . 14 = (dist‘𝐺)
6 motgrp.1 . . . . . . . . . . . . . 14 (𝜑𝐺𝑉)
7 motcgrg.f . . . . . . . . . . . . . 14 (𝜑𝐹 ∈ (𝐺Ismt𝐺))
84, 5, 6, 7motf1o 25333 . . . . . . . . . . . . 13 (𝜑𝐹:𝑃1-1-onto𝑃)
9 f1of 6094 . . . . . . . . . . . . 13 (𝐹:𝑃1-1-onto𝑃𝐹:𝑃𝑃)
108, 9syl 17 . . . . . . . . . . . 12 (𝜑𝐹:𝑃𝑃)
1110ad2antrr 761 . . . . . . . . . . 11 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐹:𝑃𝑃)
12 fco 6015 . . . . . . . . . . 11 ((𝐹:𝑃𝑃𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1311, 1, 12syl2anc 692 . . . . . . . . . 10 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
1413adantr 481 . . . . . . . . 9 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝐹𝑇):(0..^𝑛)⟶𝑃)
15 fdm 6008 . . . . . . . . 9 ((𝐹𝑇):(0..^𝑛)⟶𝑃 → dom (𝐹𝑇) = (0..^𝑛))
1614, 15syl 17 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → dom (𝐹𝑇) = (0..^𝑛))
173, 16eleqtrd 2700 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑎 ∈ (0..^𝑛))
18 fvco3 6232 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑎 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
192, 17, 18syl2anc 692 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑎) = (𝐹‘(𝑇𝑎)))
20 simprr 795 . . . . . . . 8 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ dom (𝐹𝑇))
2120, 16eleqtrd 2700 . . . . . . 7 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝑏 ∈ (0..^𝑛))
22 fvco3 6232 . . . . . . 7 ((𝑇:(0..^𝑛)⟶𝑃𝑏 ∈ (0..^𝑛)) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
232, 21, 22syl2anc 692 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹𝑇)‘𝑏) = (𝐹‘(𝑇𝑏)))
2419, 23oveq12d 6622 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))))
256ad2antrr 761 . . . . . . 7 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → 𝐺𝑉)
2625adantr 481 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐺𝑉)
272, 17ffvelrnd 6316 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑎) ∈ 𝑃)
282, 21ffvelrnd 6316 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (𝑇𝑏) ∈ 𝑃)
297ad3antrrr 765 . . . . . 6 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → 𝐹 ∈ (𝐺Ismt𝐺))
304, 5, 26, 27, 28, 29motcgr 25331 . . . . 5 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → ((𝐹‘(𝑇𝑎)) (𝐹‘(𝑇𝑏))) = ((𝑇𝑎) (𝑇𝑏)))
3124, 30eqtrd 2655 . . . 4 ((((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) ∧ (𝑎 ∈ dom (𝐹𝑇) ∧ 𝑏 ∈ dom (𝐹𝑇))) → (((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
3231ralrimivva 2965 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏)))
33 motcgrg.r . . . 4 = (cgrG‘𝐺)
34 fzo0ssnn0 12489 . . . . . 6 (0..^𝑛) ⊆ ℕ0
35 nn0ssre 11240 . . . . . 6 0 ⊆ ℝ
3634, 35sstri 3592 . . . . 5 (0..^𝑛) ⊆ ℝ
3736a1i 11 . . . 4 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (0..^𝑛) ⊆ ℝ)
384, 5, 33, 25, 37, 13, 1iscgrgd 25308 . . 3 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → ((𝐹𝑇) 𝑇 ↔ ∀𝑎 ∈ dom (𝐹𝑇)∀𝑏 ∈ dom (𝐹𝑇)(((𝐹𝑇)‘𝑎) ((𝐹𝑇)‘𝑏)) = ((𝑇𝑎) (𝑇𝑏))))
3932, 38mpbird 247 . 2 (((𝜑𝑛 ∈ ℕ0) ∧ 𝑇:(0..^𝑛)⟶𝑃) → (𝐹𝑇) 𝑇)
40 motcgrg.t . . 3 (𝜑𝑇 ∈ Word 𝑃)
41 iswrd 13246 . . 3 (𝑇 ∈ Word 𝑃 ↔ ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4240, 41sylib 208 . 2 (𝜑 → ∃𝑛 ∈ ℕ0 𝑇:(0..^𝑛)⟶𝑃)
4339, 42r19.29a 3071 1 (𝜑 → (𝐹𝑇) 𝑇)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384   = wceq 1480  wcel 1987  wral 2907  wrex 2908  wss 3555  {cpr 4150  cop 4154   class class class wbr 4613  dom cdm 5074  ccom 5078  wf 5843  1-1-ontowf1o 5846  cfv 5847  (class class class)co 6604  cmpt2 6606  cr 9879  0cc0 9880  0cn0 11236  ..^cfzo 12406  Word cword 13230  ndxcnx 15778  Basecbs 15781  +gcplusg 15862  distcds 15871  cgrGccgrg 25305  Ismtcismt 25327
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-rep 4731  ax-sep 4741  ax-nul 4749  ax-pow 4803  ax-pr 4867  ax-un 6902  ax-cnex 9936  ax-resscn 9937  ax-1cn 9938  ax-icn 9939  ax-addcl 9940  ax-addrcl 9941  ax-mulcl 9942  ax-mulrcl 9943  ax-mulcom 9944  ax-addass 9945  ax-mulass 9946  ax-distr 9947  ax-i2m1 9948  ax-1ne0 9949  ax-1rid 9950  ax-rnegex 9951  ax-rrecex 9952  ax-cnre 9953  ax-pre-lttri 9954  ax-pre-lttrn 9955  ax-pre-ltadd 9956  ax-pre-mulgt0 9957
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2912  df-rex 2913  df-reu 2914  df-rab 2916  df-v 3188  df-sbc 3418  df-csb 3515  df-dif 3558  df-un 3560  df-in 3562  df-ss 3569  df-pss 3571  df-nul 3892  df-if 4059  df-pw 4132  df-sn 4149  df-pr 4151  df-tp 4153  df-op 4155  df-uni 4403  df-iun 4487  df-br 4614  df-opab 4674  df-mpt 4675  df-tr 4713  df-eprel 4985  df-id 4989  df-po 4995  df-so 4996  df-fr 5033  df-we 5035  df-xp 5080  df-rel 5081  df-cnv 5082  df-co 5083  df-dm 5084  df-rn 5085  df-res 5086  df-ima 5087  df-pred 5639  df-ord 5685  df-on 5686  df-lim 5687  df-suc 5688  df-iota 5810  df-fun 5849  df-fn 5850  df-f 5851  df-f1 5852  df-fo 5853  df-f1o 5854  df-fv 5855  df-riota 6565  df-ov 6607  df-oprab 6608  df-mpt2 6609  df-om 7013  df-1st 7113  df-2nd 7114  df-wrecs 7352  df-recs 7413  df-rdg 7451  df-er 7687  df-map 7804  df-pm 7805  df-en 7900  df-dom 7901  df-sdom 7902  df-pnf 10020  df-mnf 10021  df-xr 10022  df-ltxr 10023  df-le 10024  df-sub 10212  df-neg 10213  df-nn 10965  df-n0 11237  df-z 11322  df-uz 11632  df-fz 12269  df-fzo 12407  df-word 13238  df-cgrg 25306  df-ismt 25328
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator