![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > motrag | Structured version Visualization version GIF version |
Description: Right angles are preserved by motions. (Contributed by Thierry Arnoux, 16-Dec-2019.) |
Ref | Expression |
---|---|
israg.p | ⊢ 𝑃 = (Base‘𝐺) |
israg.d | ⊢ − = (dist‘𝐺) |
israg.i | ⊢ 𝐼 = (Itv‘𝐺) |
israg.l | ⊢ 𝐿 = (LineG‘𝐺) |
israg.s | ⊢ 𝑆 = (pInvG‘𝐺) |
israg.g | ⊢ (𝜑 → 𝐺 ∈ TarskiG) |
israg.a | ⊢ (𝜑 → 𝐴 ∈ 𝑃) |
israg.b | ⊢ (𝜑 → 𝐵 ∈ 𝑃) |
israg.c | ⊢ (𝜑 → 𝐶 ∈ 𝑃) |
motrag.f | ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) |
motrag.1 | ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) |
Ref | Expression |
---|---|
motrag | ⊢ (𝜑 → 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉 ∈ (∟G‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | israg.p | . 2 ⊢ 𝑃 = (Base‘𝐺) | |
2 | israg.d | . 2 ⊢ − = (dist‘𝐺) | |
3 | israg.i | . 2 ⊢ 𝐼 = (Itv‘𝐺) | |
4 | israg.l | . 2 ⊢ 𝐿 = (LineG‘𝐺) | |
5 | israg.s | . 2 ⊢ 𝑆 = (pInvG‘𝐺) | |
6 | israg.g | . 2 ⊢ (𝜑 → 𝐺 ∈ TarskiG) | |
7 | israg.a | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑃) | |
8 | israg.b | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝑃) | |
9 | israg.c | . 2 ⊢ (𝜑 → 𝐶 ∈ 𝑃) | |
10 | eqid 2651 | . 2 ⊢ (cgrG‘𝐺) = (cgrG‘𝐺) | |
11 | motrag.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ (𝐺Ismt𝐺)) | |
12 | 1, 2, 6, 11, 7 | motcl 25479 | . 2 ⊢ (𝜑 → (𝐹‘𝐴) ∈ 𝑃) |
13 | 1, 2, 6, 11, 8 | motcl 25479 | . 2 ⊢ (𝜑 → (𝐹‘𝐵) ∈ 𝑃) |
14 | 1, 2, 6, 11, 9 | motcl 25479 | . 2 ⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝑃) |
15 | motrag.1 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉 ∈ (∟G‘𝐺)) | |
16 | eqidd 2652 | . . 3 ⊢ (𝜑 → (𝐹‘𝐴) = (𝐹‘𝐴)) | |
17 | eqidd 2652 | . . 3 ⊢ (𝜑 → (𝐹‘𝐵) = (𝐹‘𝐵)) | |
18 | eqidd 2652 | . . 3 ⊢ (𝜑 → (𝐹‘𝐶) = (𝐹‘𝐶)) | |
19 | 1, 2, 10, 6, 7, 8, 9, 16, 17, 18, 11 | motcgr3 25485 | . 2 ⊢ (𝜑 → 〈“𝐴𝐵𝐶”〉(cgrG‘𝐺)〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉) |
20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 14, 15, 19 | ragcgr 25647 | 1 ⊢ (𝜑 → 〈“(𝐹‘𝐴)(𝐹‘𝐵)(𝐹‘𝐶)”〉 ∈ (∟G‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1523 ∈ wcel 2030 ‘cfv 5926 (class class class)co 6690 〈“cs3 13633 Basecbs 15904 distcds 15997 TarskiGcstrkg 25374 Itvcitv 25380 LineGclng 25381 cgrGccgrg 25450 Ismtcismt 25472 pInvGcmir 25592 ∟Gcrag 25633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-pm 7902 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-fzo 12505 df-hash 13158 df-word 13331 df-concat 13333 df-s1 13334 df-s2 13639 df-s3 13640 df-trkgc 25392 df-trkgb 25393 df-trkgcb 25394 df-trkg 25397 df-cgrg 25451 df-ismt 25473 df-mir 25593 df-rag 25634 |
This theorem is referenced by: hypcgrlem2 25737 |
Copyright terms: Public domain | W3C validator |