![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mp3an2 | Structured version Visualization version GIF version |
Description: An inference based on modus ponens. (Contributed by NM, 21-Nov-1994.) |
Ref | Expression |
---|---|
mp3an2.1 | ⊢ 𝜓 |
mp3an2.2 | ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
mp3an2 | ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mp3an2.1 | . 2 ⊢ 𝜓 | |
2 | mp3an2.2 | . . 3 ⊢ ((𝜑 ∧ 𝜓 ∧ 𝜒) → 𝜃) | |
3 | 2 | 3expa 1284 | . 2 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
4 | 1, 3 | mpanl2 717 | 1 ⊢ ((𝜑 ∧ 𝜒) → 𝜃) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1054 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 385 df-3an 1056 |
This theorem is referenced by: mp3anl2 1459 tz7.7 5787 ordin 5791 onfr 5801 wfrlem14 7473 wfrlem17 7476 tfrlem11 7529 epfrs 8645 zorng 9364 tsk2 9625 tskcard 9641 gruina 9678 muladd11 10244 00id 10249 ltaddneg 10289 negsub 10367 subneg 10368 muleqadd 10709 diveq1 10756 conjmul 10780 recp1lt1 10959 nnsub 11097 addltmul 11306 nnunb 11326 zltp1le 11465 gtndiv 11492 eluzp1m1 11749 zbtwnre 11824 rebtwnz 11825 xnn0le2is012 12114 supxrbnd 12196 divelunit 12352 fznatpl1 12433 flbi2 12658 fldiv 12699 modid 12735 modm1p1mod0 12761 fzen2 12808 nn0ennn 12818 seqshft2 12867 seqf1olem1 12880 ser1const 12897 sq01 13026 expnbnd 13033 faclbnd3 13119 faclbnd5 13125 hashunsng 13219 hashxplem 13258 ccatrid 13405 sgnn 13878 sqrlem2 14028 sqrlem7 14033 leabs 14083 abs2dif 14116 cvgrat 14659 cos2t 14952 sin01gt0 14964 cos01gt0 14965 demoivre 14974 demoivreALT 14975 znnenlem 14984 rpnnen2lem5 14991 rpnnen2lem12 14998 omeo 15137 gcd0id 15287 sqgcd 15325 isprm3 15443 eulerthlem2 15534 pczpre 15599 pcrec 15610 ressress 15985 mulgm1 17609 unitgrpid 18715 mdet0pr 20446 m2detleib 20485 cmpcov2 21241 ufileu 21770 tgpconncompeqg 21962 itg2ge0 23547 mdegldg 23871 abssinper 24315 ppiub 24974 chtub 24982 bposlem2 25055 lgs1 25111 colinearalglem4 25834 axsegconlem1 25842 axpaschlem 25865 axcontlem2 25890 axcontlem4 25892 axcontlem7 25895 axcontlem8 25896 funvtxval 25950 funiedgval 25951 vc0 27557 vcm 27559 nvmval2 27626 nvmf 27628 nvmdi 27631 nvnegneg 27632 nvpncan2 27636 nvaddsub4 27640 nvm1 27648 nvdif 27649 nvpi 27650 nvz0 27651 nvmtri 27654 nvabs 27655 nvge0 27656 imsmetlem 27673 4ipval2 27691 ipval3 27692 ipidsq 27693 dipcj 27697 sspmval 27716 ipasslem1 27814 ipasslem2 27815 dipsubdir 27831 hvsubdistr1 28034 shsubcl 28205 shsel3 28302 shunssi 28355 hosubdi 28795 lnopmi 28987 nmophmi 29018 nmopcoi 29082 opsqrlem6 29132 hstle 29217 hst0 29220 mdsl2i 29309 superpos 29341 dmdbr5ati 29409 resvsca 29958 cvmliftphtlem 31425 topdifinffinlem 33325 finixpnum 33524 tan2h 33531 poimirlem3 33542 poimirlem4 33543 poimirlem7 33546 poimirlem16 33555 poimirlem17 33556 poimirlem19 33558 poimirlem20 33559 poimirlem24 33563 poimirlem28 33567 mblfinlem2 33577 mblfinlem4 33579 ismblfin 33580 el3v2 34132 atlatle 34925 pmaple 35365 dihglblem2N 36900 elnnrabdioph 37688 rabren3dioph 37696 zindbi 37828 expgrowth 38851 binomcxplemnotnn0 38872 trelpss 38976 etransc 40818 mogoldbb 41998 pgrple2abl 42471 aacllem 42875 |
Copyright terms: Public domain | W3C validator |