MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplbas2 Structured version   Visualization version   GIF version

Theorem mplbas2 20245
Description: An alternative expression for the set of polynomials, as the smallest subalgebra of the set of power series that contains all the variable generators. (Contributed by Mario Carneiro, 10-Jan-2015.)
Hypotheses
Ref Expression
mplbas2.p 𝑃 = (𝐼 mPoly 𝑅)
mplbas2.s 𝑆 = (𝐼 mPwSer 𝑅)
mplbas2.v 𝑉 = (𝐼 mVar 𝑅)
mplbas2.a 𝐴 = (AlgSpan‘𝑆)
mplbas2.i (𝜑𝐼𝑊)
mplbas2.r (𝜑𝑅 ∈ CRing)
Assertion
Ref Expression
mplbas2 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))

Proof of Theorem mplbas2
Dummy variables 𝑢 𝑘 𝑣 𝑥 𝑧 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplbas2.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
2 mplbas2.i . . . . 5 (𝜑𝐼𝑊)
3 mplbas2.r . . . . 5 (𝜑𝑅 ∈ CRing)
41, 2, 3psrassa 20188 . . . 4 (𝜑𝑆 ∈ AssAlg)
5 mplbas2.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
6 eqid 2821 . . . . . 6 (Base‘𝑃) = (Base‘𝑃)
7 eqid 2821 . . . . . 6 (Base‘𝑆) = (Base‘𝑆)
85, 1, 6, 7mplbasss 20206 . . . . 5 (Base‘𝑃) ⊆ (Base‘𝑆)
98a1i 11 . . . 4 (𝜑 → (Base‘𝑃) ⊆ (Base‘𝑆))
10 mplbas2.v . . . . . . . 8 𝑉 = (𝐼 mVar 𝑅)
11 crngring 19302 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
123, 11syl 17 . . . . . . . 8 (𝜑𝑅 ∈ Ring)
131, 10, 7, 2, 12mvrf 20198 . . . . . . 7 (𝜑𝑉:𝐼⟶(Base‘𝑆))
1413ffnd 6509 . . . . . 6 (𝜑𝑉 Fn 𝐼)
152adantr 483 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝐼𝑊)
1612adantr 483 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑅 ∈ Ring)
17 simpr 487 . . . . . . . 8 ((𝜑𝑥𝐼) → 𝑥𝐼)
185, 10, 6, 15, 16, 17mvrcl 20223 . . . . . . 7 ((𝜑𝑥𝐼) → (𝑉𝑥) ∈ (Base‘𝑃))
1918ralrimiva 3182 . . . . . 6 (𝜑 → ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃))
20 ffnfv 6876 . . . . . 6 (𝑉:𝐼⟶(Base‘𝑃) ↔ (𝑉 Fn 𝐼 ∧ ∀𝑥𝐼 (𝑉𝑥) ∈ (Base‘𝑃)))
2114, 19, 20sylanbrc 585 . . . . 5 (𝜑𝑉:𝐼⟶(Base‘𝑃))
2221frnd 6515 . . . 4 (𝜑 → ran 𝑉 ⊆ (Base‘𝑃))
23 mplbas2.a . . . . 5 𝐴 = (AlgSpan‘𝑆)
2423, 7aspss 20100 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ⊆ (Base‘𝑆) ∧ ran 𝑉 ⊆ (Base‘𝑃)) → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
254, 9, 22, 24syl3anc 1367 . . 3 (𝜑 → (𝐴‘ran 𝑉) ⊆ (𝐴‘(Base‘𝑃)))
261, 5, 6, 2, 12mplsubrg 20214 . . . 4 (𝜑 → (Base‘𝑃) ∈ (SubRing‘𝑆))
271, 5, 6, 2, 12mpllss 20212 . . . 4 (𝜑 → (Base‘𝑃) ∈ (LSubSp‘𝑆))
28 eqid 2821 . . . . 5 (LSubSp‘𝑆) = (LSubSp‘𝑆)
2923, 7, 28aspid 20098 . . . 4 ((𝑆 ∈ AssAlg ∧ (Base‘𝑃) ∈ (SubRing‘𝑆) ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
304, 26, 27, 29syl3anc 1367 . . 3 (𝜑 → (𝐴‘(Base‘𝑃)) = (Base‘𝑃))
3125, 30sseqtrd 4006 . 2 (𝜑 → (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))
32 eqid 2821 . . . 4 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
33 eqid 2821 . . . 4 (0g𝑅) = (0g𝑅)
34 eqid 2821 . . . 4 (1r𝑅) = (1r𝑅)
352adantr 483 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝐼𝑊)
36 eqid 2821 . . . 4 ( ·𝑠𝑃) = ( ·𝑠𝑃)
3712adantr 483 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 ∈ Ring)
38 simpr 487 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (Base‘𝑃))
395, 32, 33, 34, 35, 6, 36, 37, 38mplcoe1 20240 . . 3 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 = (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))))
40 eqid 2821 . . . 4 (0g𝑃) = (0g𝑃)
415mplring 20226 . . . . . . 7 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
422, 12, 41syl2anc 586 . . . . . 6 (𝜑𝑃 ∈ Ring)
43 ringabl 19324 . . . . . 6 (𝑃 ∈ Ring → 𝑃 ∈ Abel)
4442, 43syl 17 . . . . 5 (𝜑𝑃 ∈ Abel)
4544adantr 483 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑃 ∈ Abel)
46 ovex 7183 . . . . . 6 (ℕ0m 𝐼) ∈ V
4746rabex 5227 . . . . 5 {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V
4847a1i 11 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∈ V)
4913frnd 6515 . . . . . . . 8 (𝜑 → ran 𝑉 ⊆ (Base‘𝑆))
5023, 7aspsubrg 20099 . . . . . . . 8 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
514, 49, 50syl2anc 586 . . . . . . 7 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑆))
525, 1, 6mplval2 20205 . . . . . . . . 9 𝑃 = (𝑆s (Base‘𝑃))
5352subsubrg 19555 . . . . . . . 8 ((Base‘𝑃) ∈ (SubRing‘𝑆) → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5426, 53syl 17 . . . . . . 7 (𝜑 → ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
5551, 31, 54mpbir2and 711 . . . . . 6 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
56 subrgsubg 19535 . . . . . 6 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5755, 56syl 17 . . . . 5 (𝜑 → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
5857adantr 483 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝐴‘ran 𝑉) ∈ (SubGrp‘𝑃))
595mpllmod 20225 . . . . . . . 8 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ LMod)
602, 12, 59syl2anc 586 . . . . . . 7 (𝜑𝑃 ∈ LMod)
6160ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑃 ∈ LMod)
6223, 7, 28asplss 20097 . . . . . . . . 9 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
634, 49, 62syl2anc 586 . . . . . . . 8 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆))
641, 2, 12psrlmod 20175 . . . . . . . . 9 (𝜑𝑆 ∈ LMod)
65 eqid 2821 . . . . . . . . . 10 (LSubSp‘𝑃) = (LSubSp‘𝑃)
6652, 28, 65lsslss 19727 . . . . . . . . 9 ((𝑆 ∈ LMod ∧ (Base‘𝑃) ∈ (LSubSp‘𝑆)) → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6764, 27, 66syl2anc 586 . . . . . . . 8 (𝜑 → ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃) ↔ ((𝐴‘ran 𝑉) ∈ (LSubSp‘𝑆) ∧ (𝐴‘ran 𝑉) ⊆ (Base‘𝑃))))
6863, 31, 67mpbir2and 711 . . . . . . 7 (𝜑 → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
6968ad2antrr 724 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃))
70 eqid 2821 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
715, 70, 6, 32, 38mplelf 20207 . . . . . . . 8 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥:{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(Base‘𝑅))
7271ffvelrnda 6845 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘𝑅))
735, 35, 37mplsca 20219 . . . . . . . . 9 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑅 = (Scalar‘𝑃))
7473adantr 483 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 = (Scalar‘𝑃))
7574fveq2d 6668 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
7672, 75eleqtrd 2915 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)))
772ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝐼𝑊)
78 eqid 2821 . . . . . . . 8 (mulGrp‘𝑃) = (mulGrp‘𝑃)
79 eqid 2821 . . . . . . . 8 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
803ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ CRing)
81 simpr 487 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
825, 32, 33, 34, 77, 78, 79, 10, 80, 81mplcoe2 20244 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) = ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))))
83 eqid 2821 . . . . . . . . 9 (1r𝑃) = (1r𝑃)
8478, 83ringidval 19247 . . . . . . . 8 (1r𝑃) = (0g‘(mulGrp‘𝑃))
855mplcrng 20228 . . . . . . . . . . 11 ((𝐼𝑊𝑅 ∈ CRing) → 𝑃 ∈ CRing)
862, 3, 85syl2anc 586 . . . . . . . . . 10 (𝜑𝑃 ∈ CRing)
8778crngmgp 19299 . . . . . . . . . 10 (𝑃 ∈ CRing → (mulGrp‘𝑃) ∈ CMnd)
8886, 87syl 17 . . . . . . . . 9 (𝜑 → (mulGrp‘𝑃) ∈ CMnd)
8988ad2antrr 724 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (mulGrp‘𝑃) ∈ CMnd)
9055ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubRing‘𝑃))
9178subrgsubm 19542 . . . . . . . . 9 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
9290, 91syl 17 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝐴‘ran 𝑉) ∈ (SubMnd‘(mulGrp‘𝑃)))
93 simplll 773 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → 𝜑)
9432psrbag 20138 . . . . . . . . . . . . . 14 (𝐼𝑊 → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9535, 94syl 17 . . . . . . . . . . . . 13 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↔ (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin)))
9695biimpa 479 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘:𝐼⟶ℕ0 ∧ (𝑘 “ ℕ) ∈ Fin))
9796simpld 497 . . . . . . . . . . 11 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑘:𝐼⟶ℕ0)
9897ffvelrnda 6845 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑘𝑧) ∈ ℕ0)
9923, 7aspssid 20101 . . . . . . . . . . . . 13 ((𝑆 ∈ AssAlg ∧ ran 𝑉 ⊆ (Base‘𝑆)) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
1004, 49, 99syl2anc 586 . . . . . . . . . . . 12 (𝜑 → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
101100ad3antrrr 728 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ran 𝑉 ⊆ (𝐴‘ran 𝑉))
10214ad2antrr 724 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑉 Fn 𝐼)
103 fnfvelrn 6842 . . . . . . . . . . . 12 ((𝑉 Fn 𝐼𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
104102, 103sylan 582 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ ran 𝑉)
105101, 104sseldd 3967 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → (𝑉𝑧) ∈ (𝐴‘ran 𝑉))
10678, 6mgpbas 19239 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
107 eqid 2821 . . . . . . . . . . . 12 (.r𝑃) = (.r𝑃)
10878, 107mgpplusg 19237 . . . . . . . . . . 11 (.r𝑃) = (+g‘(mulGrp‘𝑃))
109107subrgmcl 19541 . . . . . . . . . . . 12 (((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) ∧ 𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
11055, 109syl3an1 1159 . . . . . . . . . . 11 ((𝜑𝑢 ∈ (𝐴‘ran 𝑉) ∧ 𝑣 ∈ (𝐴‘ran 𝑉)) → (𝑢(.r𝑃)𝑣) ∈ (𝐴‘ran 𝑉))
11183subrg1cl 19537 . . . . . . . . . . . 12 ((𝐴‘ran 𝑉) ∈ (SubRing‘𝑃) → (1r𝑃) ∈ (𝐴‘ran 𝑉))
11255, 111syl 17 . . . . . . . . . . 11 (𝜑 → (1r𝑃) ∈ (𝐴‘ran 𝑉))
113106, 79, 108, 88, 31, 110, 84, 112mulgnn0subcl 18235 . . . . . . . . . 10 ((𝜑 ∧ (𝑘𝑧) ∈ ℕ0 ∧ (𝑉𝑧) ∈ (𝐴‘ran 𝑉)) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
11493, 98, 105, 113syl3anc 1367 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧𝐼) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) ∈ (𝐴‘ran 𝑉))
115114fmpttd 6873 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))):𝐼⟶(𝐴‘ran 𝑉))
1162mptexd 6981 . . . . . . . . . 10 (𝜑 → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
117116ad2antrr 724 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V)
118 funmpt 6387 . . . . . . . . . 10 Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
119118a1i 11 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))))
120 fvexd 6679 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (1r𝑃) ∈ V)
12196simprd 498 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑘 “ ℕ) ∈ Fin)
122 elrabi 3674 . . . . . . . . . . . . 13 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} → 𝑘 ∈ (ℕ0m 𝐼))
123 elmapi 8422 . . . . . . . . . . . . . . 15 (𝑘 ∈ (ℕ0m 𝐼) → 𝑘:𝐼⟶ℕ0)
124123adantl 484 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 𝑘:𝐼⟶ℕ0)
1252ad2antrr 724 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 𝐼𝑊)
126 frnnn0supp 11947 . . . . . . . . . . . . . . . 16 ((𝐼𝑊𝑘:𝐼⟶ℕ0) → (𝑘 supp 0) = (𝑘 “ ℕ))
127125, 124, 126syl2anc 586 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → (𝑘 supp 0) = (𝑘 “ ℕ))
128 eqimss 4022 . . . . . . . . . . . . . . 15 ((𝑘 supp 0) = (𝑘 “ ℕ) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
129127, 128syl 17 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → (𝑘 supp 0) ⊆ (𝑘 “ ℕ))
130 c0ex 10629 . . . . . . . . . . . . . . 15 0 ∈ V
131130a1i 11 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) → 0 ∈ V)
132124, 129, 125, 131suppssr 7855 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ (ℕ0m 𝐼)) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
133122, 132sylanl2 679 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑘𝑧) = 0)
134133oveq1d 7165 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)))
1352ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝐼𝑊)
13612ad3antrrr 728 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑅 ∈ Ring)
137 eldifi 4102 . . . . . . . . . . . . . 14 (𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ)) → 𝑧𝐼)
138137adantl 484 . . . . . . . . . . . . 13 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → 𝑧𝐼)
1395, 10, 6, 135, 136, 138mvrcl 20223 . . . . . . . . . . . 12 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (𝑉𝑧) ∈ (Base‘𝑃))
140106, 84, 79mulg0 18225 . . . . . . . . . . . 12 ((𝑉𝑧) ∈ (Base‘𝑃) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
141139, 140syl 17 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → (0(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
142134, 141eqtrd 2856 . . . . . . . . . 10 ((((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) ∧ 𝑧 ∈ (𝐼 ∖ (𝑘 “ ℕ))) → ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)) = (1r𝑃))
143142, 77suppss2 7858 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))
144 suppssfifsupp 8842 . . . . . . . . 9 ((((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∈ V ∧ Fun (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) ∧ (1r𝑃) ∈ V) ∧ ((𝑘 “ ℕ) ∈ Fin ∧ ((𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) supp (1r𝑃)) ⊆ (𝑘 “ ℕ))) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
145117, 119, 120, 121, 143, 144syl32anc 1374 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧))) finSupp (1r𝑃))
14684, 89, 77, 92, 115, 145gsumsubmcl 19033 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((mulGrp‘𝑃) Σg (𝑧𝐼 ↦ ((𝑘𝑧)(.g‘(mulGrp‘𝑃))(𝑉𝑧)))) ∈ (𝐴‘ran 𝑉))
14782, 146eqeltrd 2913 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))
148 eqid 2821 . . . . . . 7 (Scalar‘𝑃) = (Scalar‘𝑃)
149 eqid 2821 . . . . . . 7 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
150148, 36, 149, 65lssvscl 19721 . . . . . 6 (((𝑃 ∈ LMod ∧ (𝐴‘ran 𝑉) ∈ (LSubSp‘𝑃)) ∧ ((𝑥𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (𝐴‘ran 𝑉))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
15161, 69, 76, 147, 150syl22anc 836 . . . . 5 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) ∈ (𝐴‘ran 𝑉))
152151fmpttd 6873 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))):{𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}⟶(𝐴‘ran 𝑉))
15346mptrabex 6982 . . . . . . 7 (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V
154 funmpt 6387 . . . . . . 7 Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
155 fvex 6677 . . . . . . 7 (0g𝑃) ∈ V
156153, 154, 1553pm3.2i 1335 . . . . . 6 ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V)
157156a1i 11 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V))
1585, 1, 7, 33, 6mplelbas 20204 . . . . . . . 8 (𝑥 ∈ (Base‘𝑃) ↔ (𝑥 ∈ (Base‘𝑆) ∧ 𝑥 finSupp (0g𝑅)))
159158simprbi 499 . . . . . . 7 (𝑥 ∈ (Base‘𝑃) → 𝑥 finSupp (0g𝑅))
160159adantl 484 . . . . . 6 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 finSupp (0g𝑅))
161160fsuppimpd 8834 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ∈ Fin)
162 ssidd 3989 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑥 supp (0g𝑅)) ⊆ (𝑥 supp (0g𝑅)))
163 fvexd 6679 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) ∈ V)
16471, 162, 48, 163suppssr 7855 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g𝑅))
16573fveq2d 6668 . . . . . . . . . 10 ((𝜑𝑥 ∈ (Base‘𝑃)) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
166165adantr 483 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
167164, 166eqtrd 2856 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → (𝑥𝑘) = (0g‘(Scalar‘𝑃)))
168167oveq1d 7165 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))
169 eldifi 4102 . . . . . . . 8 (𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅))) → 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin})
17012ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → 𝑅 ∈ Ring)
1715, 6, 33, 34, 32, 77, 170, 81mplmon 20238 . . . . . . . . 9 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃))
172 eqid 2821 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
1736, 148, 36, 172, 40lmod0vs 19661 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))) ∈ (Base‘𝑃)) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
17461, 171, 173syl2anc 586 . . . . . . . 8 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
175169, 174sylan2 594 . . . . . . 7 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((0g‘(Scalar‘𝑃))( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
176168, 175eqtrd 2856 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑃)) ∧ 𝑘 ∈ ({𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ∖ (𝑥 supp (0g𝑅)))) → ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))) = (0g𝑃))
177176, 48suppss2 7858 . . . . 5 ((𝜑𝑥 ∈ (Base‘𝑃)) → ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))
178 suppssfifsupp 8842 . . . . 5 ((((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∈ V ∧ Fun (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) ∧ (0g𝑃) ∈ V) ∧ ((𝑥 supp (0g𝑅)) ∈ Fin ∧ ((𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) supp (0g𝑃)) ⊆ (𝑥 supp (0g𝑅)))) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
179157, 161, 177, 178syl12anc 834 . . . 4 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅))))) finSupp (0g𝑃))
18040, 45, 48, 58, 152, 179gsumsubgcl 19034 . . 3 ((𝜑𝑥 ∈ (Base‘𝑃)) → (𝑃 Σg (𝑘 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ ((𝑥𝑘)( ·𝑠𝑃)(𝑦 ∈ {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin} ↦ if(𝑦 = 𝑘, (1r𝑅), (0g𝑅)))))) ∈ (𝐴‘ran 𝑉))
18139, 180eqeltrd 2913 . 2 ((𝜑𝑥 ∈ (Base‘𝑃)) → 𝑥 ∈ (𝐴‘ran 𝑉))
18231, 181eqelssd 3987 1 (𝜑 → (𝐴‘ran 𝑉) = (Base‘𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wral 3138  {crab 3142  Vcvv 3494  cdif 3932  wss 3935  ifcif 4466   class class class wbr 5058  cmpt 5138  ccnv 5548  ran crn 5550  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  cfv 6349  (class class class)co 7150   supp csupp 7824  m cmap 8400  Fincfn 8503   finSupp cfsupp 8827  0cc0 10531  cn 11632  0cn0 11891  Basecbs 16477  .rcmulr 16560  Scalarcsca 16562   ·𝑠 cvsca 16563  0gc0g 16707   Σg cgsu 16708  SubMndcsubmnd 17949  .gcmg 18218  SubGrpcsubg 18267  CMndccmn 18900  Abelcabl 18901  mulGrpcmgp 19233  1rcur 19245  Ringcrg 19291  CRingccrg 19292  SubRingcsubrg 19525  LModclmod 19628  LSubSpclss 19697  AssAlgcasa 20076  AlgSpancasp 20077   mPwSer cmps 20125   mVar cmvr 20126   mPoly cmpl 20127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-srg 19250  df-ring 19293  df-cring 19294  df-subrg 19527  df-lmod 19630  df-lss 19698  df-assa 20079  df-asp 20080  df-psr 20130  df-mvr 20131  df-mpl 20132
This theorem is referenced by:  mplind  20276  evlseu  20290
  Copyright terms: Public domain W3C validator