MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe1 Structured version   Visualization version   GIF version

Theorem mplcoe1 20248
Description: Decompose a polynomial into a finite sum of monomials. (Contributed by Mario Carneiro, 9-Jan-2015.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe1.b 𝐵 = (Base‘𝑃)
mplcoe1.n · = ( ·𝑠𝑃)
mplcoe1.r (𝜑𝑅 ∈ Ring)
mplcoe1.x (𝜑𝑋𝐵)
Assertion
Ref Expression
mplcoe1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Distinct variable groups:   𝑦,𝑘, 1   𝐵,𝑘   𝑓,𝑘,𝑦,𝐼   𝜑,𝑘,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑦   𝑃,𝑘   0 ,𝑓,𝑘,𝑦   𝑓,𝑋,𝑘,𝑦   𝑘,𝑊,𝑦   · ,𝑘
Allowed substitution hints:   𝜑(𝑓)   𝐵(𝑦,𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑘)   · (𝑦,𝑓)   1 (𝑓)   𝑊(𝑓)

Proof of Theorem mplcoe1
Dummy variables 𝑤 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplcoe1.p . . . . . 6 𝑃 = (𝐼 mPoly 𝑅)
2 eqid 2823 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 mplcoe1.b . . . . . 6 𝐵 = (Base‘𝑃)
4 mplcoe1.d . . . . . 6 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
5 mplcoe1.x . . . . . 6 (𝜑𝑋𝐵)
61, 2, 3, 4, 5mplelf 20215 . . . . 5 (𝜑𝑋:𝐷⟶(Base‘𝑅))
76feqmptd 6735 . . . 4 (𝜑𝑋 = (𝑦𝐷 ↦ (𝑋𝑦)))
8 iftrue 4475 . . . . . . 7 (𝑦 ∈ (𝑋 supp 0 ) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
98adantl 484 . . . . . 6 (((𝜑𝑦𝐷) ∧ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
10 eldif 3948 . . . . . . . 8 (𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )))
11 ifid 4508 . . . . . . . . 9 if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = (𝑋𝑦)
12 ssidd 3992 . . . . . . . . . . 11 (𝜑 → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
13 ovex 7191 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
144, 13rabex2 5239 . . . . . . . . . . . 12 𝐷 ∈ V
1514a1i 11 . . . . . . . . . . 11 (𝜑𝐷 ∈ V)
16 mplcoe1.z . . . . . . . . . . . . 13 0 = (0g𝑅)
1716fvexi 6686 . . . . . . . . . . . 12 0 ∈ V
1817a1i 11 . . . . . . . . . . 11 (𝜑0 ∈ V)
196, 12, 15, 18suppssr 7863 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑦) = 0 )
2019ifeq2d 4488 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), (𝑋𝑦)) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
2111, 20syl5reqr 2873 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2210, 21sylan2br 596 . . . . . . 7 ((𝜑 ∧ (𝑦𝐷 ∧ ¬ 𝑦 ∈ (𝑋 supp 0 ))) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2322anassrs 470 . . . . . 6 (((𝜑𝑦𝐷) ∧ ¬ 𝑦 ∈ (𝑋 supp 0 )) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
249, 23pm2.61dan 811 . . . . 5 ((𝜑𝑦𝐷) → if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ) = (𝑋𝑦))
2524mpteq2dva 5163 . . . 4 (𝜑 → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ (𝑋𝑦)))
267, 25eqtr4d 2861 . . 3 (𝜑𝑋 = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
27 suppssdm 7845 . . . . 5 (𝑋 supp 0 ) ⊆ dom 𝑋
2827, 6fssdm 6532 . . . 4 (𝜑 → (𝑋 supp 0 ) ⊆ 𝐷)
29 eqid 2823 . . . . . . . . 9 (𝐼 mPwSer 𝑅) = (𝐼 mPwSer 𝑅)
30 eqid 2823 . . . . . . . . 9 (Base‘(𝐼 mPwSer 𝑅)) = (Base‘(𝐼 mPwSer 𝑅))
311, 29, 30, 16, 3mplelbas 20212 . . . . . . . 8 (𝑋𝐵 ↔ (𝑋 ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ 𝑋 finSupp 0 ))
3231simprbi 499 . . . . . . 7 (𝑋𝐵𝑋 finSupp 0 )
335, 32syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
3433fsuppimpd 8842 . . . . 5 (𝜑 → (𝑋 supp 0 ) ∈ Fin)
35 sseq1 3994 . . . . . . . 8 (𝑤 = ∅ → (𝑤𝐷 ↔ ∅ ⊆ 𝐷))
36 mpteq1 5156 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
37 mpt0 6492 . . . . . . . . . . . 12 (𝑘 ∈ ∅ ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅
3836, 37syl6eq 2874 . . . . . . . . . . 11 (𝑤 = ∅ → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = ∅)
3938oveq2d 7174 . . . . . . . . . 10 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg ∅))
40 eqid 2823 . . . . . . . . . . 11 (0g𝑃) = (0g𝑃)
4140gsum0 17896 . . . . . . . . . 10 (𝑃 Σg ∅) = (0g𝑃)
4239, 41syl6eq 2874 . . . . . . . . 9 (𝑤 = ∅ → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (0g𝑃))
43 noel 4298 . . . . . . . . . . . 12 ¬ 𝑦 ∈ ∅
44 eleq2 2903 . . . . . . . . . . . 12 (𝑤 = ∅ → (𝑦𝑤𝑦 ∈ ∅))
4543, 44mtbiri 329 . . . . . . . . . . 11 (𝑤 = ∅ → ¬ 𝑦𝑤)
4645iffalsed 4480 . . . . . . . . . 10 (𝑤 = ∅ → if(𝑦𝑤, (𝑋𝑦), 0 ) = 0 )
4746mpteq2dv 5164 . . . . . . . . 9 (𝑤 = ∅ → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷0 ))
4842, 47eqeq12d 2839 . . . . . . . 8 (𝑤 = ∅ → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (0g𝑃) = (𝑦𝐷0 )))
4935, 48imbi12d 347 . . . . . . 7 (𝑤 = ∅ → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 ))))
5049imbi2d 343 . . . . . 6 (𝑤 = ∅ → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))))
51 sseq1 3994 . . . . . . . 8 (𝑤 = 𝑥 → (𝑤𝐷𝑥𝐷))
52 mpteq1 5156 . . . . . . . . . 10 (𝑤 = 𝑥 → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
5352oveq2d 7174 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
54 eleq2 2903 . . . . . . . . . . 11 (𝑤 = 𝑥 → (𝑦𝑤𝑦𝑥))
5554ifbid 4491 . . . . . . . . . 10 (𝑤 = 𝑥 → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
5655mpteq2dv 5164 . . . . . . . . 9 (𝑤 = 𝑥 → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
5753, 56eqeq12d 2839 . . . . . . . 8 (𝑤 = 𝑥 → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
5851, 57imbi12d 347 . . . . . . 7 (𝑤 = 𝑥 → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))))
5958imbi2d 343 . . . . . 6 (𝑤 = 𝑥 → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))))
60 sseq1 3994 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑤𝐷 ↔ (𝑥 ∪ {𝑧}) ⊆ 𝐷))
61 mpteq1 5156 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
6261oveq2d 7174 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
63 eleq2 2903 . . . . . . . . . . 11 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝑤𝑦 ∈ (𝑥 ∪ {𝑧})))
6463ifbid 4491 . . . . . . . . . 10 (𝑤 = (𝑥 ∪ {𝑧}) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
6564mpteq2dv 5164 . . . . . . . . 9 (𝑤 = (𝑥 ∪ {𝑧}) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
6662, 65eqeq12d 2839 . . . . . . . 8 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
6760, 66imbi12d 347 . . . . . . 7 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
6867imbi2d 343 . . . . . 6 (𝑤 = (𝑥 ∪ {𝑧}) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
69 sseq1 3994 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → (𝑤𝐷 ↔ (𝑋 supp 0 ) ⊆ 𝐷))
70 mpteq1 5156 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
7170oveq2d 7174 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
72 eleq2 2903 . . . . . . . . . . 11 (𝑤 = (𝑋 supp 0 ) → (𝑦𝑤𝑦 ∈ (𝑋 supp 0 )))
7372ifbid 4491 . . . . . . . . . 10 (𝑤 = (𝑋 supp 0 ) → if(𝑦𝑤, (𝑋𝑦), 0 ) = if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))
7473mpteq2dv 5164 . . . . . . . . 9 (𝑤 = (𝑋 supp 0 ) → (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
7571, 74eqeq12d 2839 . . . . . . . 8 (𝑤 = (𝑋 supp 0 ) → ((𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )) ↔ (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
7669, 75imbi12d 347 . . . . . . 7 (𝑤 = (𝑋 supp 0 ) → ((𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 ))) ↔ ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
7776imbi2d 343 . . . . . 6 (𝑤 = (𝑋 supp 0 ) → ((𝜑 → (𝑤𝐷 → (𝑃 Σg (𝑘𝑤 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑤, (𝑋𝑦), 0 )))) ↔ (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))))
78 mplcoe1.i . . . . . . . . 9 (𝜑𝐼𝑊)
79 mplcoe1.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
80 ringgrp 19304 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
8179, 80syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
821, 4, 16, 40, 78, 81mpl0 20223 . . . . . . . 8 (𝜑 → (0g𝑃) = (𝐷 × { 0 }))
83 fconstmpt 5616 . . . . . . . 8 (𝐷 × { 0 }) = (𝑦𝐷0 )
8482, 83syl6eq 2874 . . . . . . 7 (𝜑 → (0g𝑃) = (𝑦𝐷0 ))
8584a1d 25 . . . . . 6 (𝜑 → (∅ ⊆ 𝐷 → (0g𝑃) = (𝑦𝐷0 )))
86 ssun1 4150 . . . . . . . . . . 11 𝑥 ⊆ (𝑥 ∪ {𝑧})
87 sstr2 3976 . . . . . . . . . . 11 (𝑥 ⊆ (𝑥 ∪ {𝑧}) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷))
8886, 87ax-mp 5 . . . . . . . . . 10 ((𝑥 ∪ {𝑧}) ⊆ 𝐷𝑥𝐷)
8988imim1i 63 . . . . . . . . 9 ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))))
90 oveq1 7165 . . . . . . . . . . . 12 ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
91 eqid 2823 . . . . . . . . . . . . . 14 (+g𝑃) = (+g𝑃)
921mplring 20234 . . . . . . . . . . . . . . . . 17 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
9378, 79, 92syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ Ring)
94 ringcmn 19333 . . . . . . . . . . . . . . . 16 (𝑃 ∈ Ring → 𝑃 ∈ CMnd)
9593, 94syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ CMnd)
9695adantr 483 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ CMnd)
97 simprll 777 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥 ∈ Fin)
98 simprr 771 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑥 ∪ {𝑧}) ⊆ 𝐷)
9998unssad 4165 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑥𝐷)
10099sselda 3969 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → 𝑘𝐷)
10178adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝐼𝑊)
10279adantr 483 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑅 ∈ Ring)
1031mpllmod 20233 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ LMod)
104101, 102, 103syl2anc 586 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → 𝑃 ∈ LMod)
1056ffvelrnda 6853 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘𝑅))
1061, 78, 79mplsca 20227 . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑅 = (Scalar‘𝑃))
107106adantr 483 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑘𝐷) → 𝑅 = (Scalar‘𝑃))
108107fveq2d 6676 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
109105, 108eleqtrd 2917 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)))
110 mplcoe1.o . . . . . . . . . . . . . . . . . 18 1 = (1r𝑅)
111 simpr 487 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑘𝐷) → 𝑘𝐷)
1121, 3, 16, 110, 4, 101, 102, 111mplmon 20246 . . . . . . . . . . . . . . . . 17 ((𝜑𝑘𝐷) → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵)
113 eqid 2823 . . . . . . . . . . . . . . . . . 18 (Scalar‘𝑃) = (Scalar‘𝑃)
114 mplcoe1.n . . . . . . . . . . . . . . . . . 18 · = ( ·𝑠𝑃)
115 eqid 2823 . . . . . . . . . . . . . . . . . 18 (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃))
1163, 113, 114, 115lmodvscl 19653 . . . . . . . . . . . . . . . . 17 ((𝑃 ∈ LMod ∧ (𝑋𝑘) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
117104, 109, 112, 116syl3anc 1367 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
118117adantlr 713 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝐷) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
119100, 118syldan 593 . . . . . . . . . . . . . 14 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑘𝑥) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) ∈ 𝐵)
120 vex 3499 . . . . . . . . . . . . . . 15 𝑧 ∈ V
121120a1i 11 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧 ∈ V)
122 simprlr 778 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ¬ 𝑧𝑥)
12378, 79, 103syl2anc 586 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ LMod)
124123adantr 483 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑃 ∈ LMod)
1256adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑋:𝐷⟶(Base‘𝑅))
12698unssbd 4166 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → {𝑧} ⊆ 𝐷)
127120snss 4720 . . . . . . . . . . . . . . . . . 18 (𝑧𝐷 ↔ {𝑧} ⊆ 𝐷)
128126, 127sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑧𝐷)
129125, 128ffvelrnd 6854 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘𝑅))
130106adantr 483 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 = (Scalar‘𝑃))
131130fveq2d 6676 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘𝑅) = (Base‘(Scalar‘𝑃)))
132129, 131eleqtrd 2917 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)))
13378adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐼𝑊)
13479adantr 483 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Ring)
1351, 3, 16, 110, 4, 133, 134, 128mplmon 20246 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵)
1363, 113, 114, 115lmodvscl 19653 . . . . . . . . . . . . . . 15 ((𝑃 ∈ LMod ∧ (𝑋𝑧) ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) ∈ 𝐵) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
137124, 132, 135, 136syl3anc 1367 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) ∈ 𝐵)
138 fveq2 6672 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑋𝑘) = (𝑋𝑧))
139 equequ2 2033 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑧 → (𝑦 = 𝑘𝑦 = 𝑧))
140139ifbid 4491 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑧 → if(𝑦 = 𝑘, 1 , 0 ) = if(𝑦 = 𝑧, 1 , 0 ))
141140mpteq2dv 5164 . . . . . . . . . . . . . . 15 (𝑘 = 𝑧 → (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
142138, 141oveq12d 7176 . . . . . . . . . . . . . 14 (𝑘 = 𝑧 → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
1433, 91, 96, 97, 119, 121, 122, 137, 142gsumunsn 19082 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
144 eqid 2823 . . . . . . . . . . . . . . 15 (+g𝑅) = (+g𝑅)
145125ffvelrnda 6853 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑦) ∈ (Base‘𝑅))
1462, 16ring0cl 19321 . . . . . . . . . . . . . . . . . . . . . 22 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
14779, 146syl 17 . . . . . . . . . . . . . . . . . . . . 21 (𝜑0 ∈ (Base‘𝑅))
148147ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 0 ∈ (Base‘𝑅))
149145, 148ifcld 4514 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅))
150149fmpttd 6881 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
151 fvex 6685 . . . . . . . . . . . . . . . . . . 19 (Base‘𝑅) ∈ V
152151, 14elmap 8437 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷) ↔ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )):𝐷⟶(Base‘𝑅))
153150, 152sylibr 236 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ ((Base‘𝑅) ↑m 𝐷))
15429, 2, 4, 30, 133psrbas 20160 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (Base‘(𝐼 mPwSer 𝑅)) = ((Base‘𝑅) ↑m 𝐷))
155153, 154eleqtrrd 2918 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)))
15614mptex 6988 . . . . . . . . . . . . . . . . . . 19 (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V
157 funmpt 6395 . . . . . . . . . . . . . . . . . . 19 Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))
158156, 157, 173pm3.2i 1335 . . . . . . . . . . . . . . . . . 18 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V)
159158a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V))
160 eldifn 4106 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝐷𝑥) → ¬ 𝑦𝑥)
161160adantl 484 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → ¬ 𝑦𝑥)
162161iffalsed 4480 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦 ∈ (𝐷𝑥)) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
16314a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝐷 ∈ V)
164162, 163suppss2 7866 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)
165 suppssfifsupp 8850 . . . . . . . . . . . . . . . . 17 ((((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ V ∧ Fun (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∧ 0 ∈ V) ∧ (𝑥 ∈ Fin ∧ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) supp 0 ) ⊆ 𝑥)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
166159, 97, 164, 165syl12anc 834 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 )
1671, 29, 30, 16, 3mplelbas 20212 . . . . . . . . . . . . . . . 16 ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵 ↔ ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ (Base‘(𝐼 mPwSer 𝑅)) ∧ (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) finSupp 0 ))
168155, 166, 167sylanbrc 585 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∈ 𝐵)
1691, 3, 144, 91, 168, 137mpladd 20224 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
170 ovexd 7193 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) ∈ V)
171 eqidd 2824 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))
172 eqid 2823 . . . . . . . . . . . . . . . . 17 (.r𝑅) = (.r𝑅)
1731, 114, 2, 3, 172, 4, 129, 135mplvsca 20229 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))
174129adantr 483 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (𝑋𝑧) ∈ (Base‘𝑅))
1752, 110ringidcl 19320 . . . . . . . . . . . . . . . . . . . 20 (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅))
176175, 146ifcld 4514 . . . . . . . . . . . . . . . . . . 19 (𝑅 ∈ Ring → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
17779, 176syl 17 . . . . . . . . . . . . . . . . . 18 (𝜑 → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
178177ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → if(𝑦 = 𝑧, 1 , 0 ) ∈ (Base‘𝑅))
179 fconstmpt 5616 . . . . . . . . . . . . . . . . . 18 (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧))
180179a1i 11 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝐷 × {(𝑋𝑧)}) = (𝑦𝐷 ↦ (𝑋𝑧)))
181 eqidd 2824 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )) = (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))
182163, 174, 178, 180, 181offval2 7428 . . . . . . . . . . . . . . . 16 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝐷 × {(𝑋𝑧)}) ∘f (.r𝑅)(𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
183173, 182eqtrd 2858 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))) = (𝑦𝐷 ↦ ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))))
184163, 149, 170, 171, 183offval2 7428 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) ∘f (+g𝑅)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))))
185134, 80syl 17 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → 𝑅 ∈ Grp)
1862, 144, 16grplid 18135 . . . . . . . . . . . . . . . . . . . 20 ((𝑅 ∈ Grp ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
187185, 129, 186syl2anc 586 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
188187ad2antrr 724 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑧))
189 simpr 487 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ {𝑧})
190 velsn 4585 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ {𝑧} ↔ 𝑦 = 𝑧)
191189, 190sylib 220 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 = 𝑧)
192191fveq2d 6676 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (𝑋𝑦) = (𝑋𝑧))
193188, 192eqtr4d 2861 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ( 0 (+g𝑅)(𝑋𝑧)) = (𝑋𝑦))
194122ad2antrr 724 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑧𝑥)
195191, 194eqneltrd 2934 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ¬ 𝑦𝑥)
196195iffalsed 4480 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦𝑥, (𝑋𝑦), 0 ) = 0 )
197191iftrued 4477 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 1 )
198197oveq2d 7174 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 1 ))
1992, 172, 110ringridm 19324 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
200134, 129, 199syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
201200ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 1 ) = (𝑋𝑧))
202198, 201eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = (𝑋𝑧))
203196, 202oveq12d 7176 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = ( 0 (+g𝑅)(𝑋𝑧)))
204 elun2 4155 . . . . . . . . . . . . . . . . . . 19 (𝑦 ∈ {𝑧} → 𝑦 ∈ (𝑥 ∪ {𝑧}))
205204adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → 𝑦 ∈ (𝑥 ∪ {𝑧}))
206205iftrued 4477 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = (𝑋𝑦))
207193, 203, 2063eqtr4d 2868 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
20881ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → 𝑅 ∈ Grp)
2092, 144, 16grprid 18136 . . . . . . . . . . . . . . . . . . 19 ((𝑅 ∈ Grp ∧ if(𝑦𝑥, (𝑋𝑦), 0 ) ∈ (Base‘𝑅)) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
210208, 149, 209syl2anc 586 . . . . . . . . . . . . . . . . . 18 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
211210adantr 483 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
212 simpr 487 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 ∈ {𝑧})
213212, 190sylnib 330 . . . . . . . . . . . . . . . . . . . . 21 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ¬ 𝑦 = 𝑧)
214213iffalsed 4480 . . . . . . . . . . . . . . . . . . . 20 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 = 𝑧, 1 , 0 ) = 0 )
215214oveq2d 7174 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = ((𝑋𝑧)(.r𝑅) 0 ))
2162, 172, 16ringrz 19340 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ (𝑋𝑧) ∈ (Base‘𝑅)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
217134, 129, 216syl2anc 586 . . . . . . . . . . . . . . . . . . . 20 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
218217ad2antrr 724 . . . . . . . . . . . . . . . . . . 19 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅) 0 ) = 0 )
219215, 218eqtrd 2858 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → ((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )) = 0 )
220219oveq2d 7174 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅) 0 ))
221 biorf 933 . . . . . . . . . . . . . . . . . . . 20 𝑦 ∈ {𝑧} → (𝑦𝑥 ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥)))
222 elun 4127 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦𝑥𝑦 ∈ {𝑧}))
223 orcom 866 . . . . . . . . . . . . . . . . . . . . 21 ((𝑦𝑥𝑦 ∈ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
224222, 223bitri 277 . . . . . . . . . . . . . . . . . . . 20 (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ (𝑦 ∈ {𝑧} ∨ 𝑦𝑥))
225221, 224syl6rbbr 292 . . . . . . . . . . . . . . . . . . 19 𝑦 ∈ {𝑧} → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
226225adantl 484 . . . . . . . . . . . . . . . . . 18 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (𝑦 ∈ (𝑥 ∪ {𝑧}) ↔ 𝑦𝑥))
227226ifbid 4491 . . . . . . . . . . . . . . . . 17 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ) = if(𝑦𝑥, (𝑋𝑦), 0 ))
228211, 220, 2273eqtr4d 2868 . . . . . . . . . . . . . . . 16 ((((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) ∧ ¬ 𝑦 ∈ {𝑧}) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
229207, 228pm2.61dan 811 . . . . . . . . . . . . . . 15 (((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) ∧ 𝑦𝐷) → (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 ))) = if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))
230229mpteq2dva 5163 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ (if(𝑦𝑥, (𝑋𝑦), 0 )(+g𝑅)((𝑋𝑧)(.r𝑅)if(𝑦 = 𝑧, 1 , 0 )))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))
231169, 184, 2303eqtrrd 2863 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))))
232143, 231eqeq12d 2839 . . . . . . . . . . . 12 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )) ↔ ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 )))) = ((𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))(+g𝑃)((𝑋𝑧) · (𝑦𝐷 ↦ if(𝑦 = 𝑧, 1 , 0 ))))))
23390, 232syl5ibr 248 . . . . . . . . . . 11 ((𝜑 ∧ ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) ∧ (𝑥 ∪ {𝑧}) ⊆ 𝐷)) → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))
234233expr 459 . . . . . . . . . 10 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → ((𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )) → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
235234a2d 29 . . . . . . . . 9 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → (((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
23689, 235syl5 34 . . . . . . . 8 ((𝜑 ∧ (𝑥 ∈ Fin ∧ ¬ 𝑧𝑥)) → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 )))))
237236expcom 416 . . . . . . 7 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → (𝜑 → ((𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 ))) → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
238237a2d 29 . . . . . 6 ((𝑥 ∈ Fin ∧ ¬ 𝑧𝑥) → ((𝜑 → (𝑥𝐷 → (𝑃 Σg (𝑘𝑥 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦𝑥, (𝑋𝑦), 0 )))) → (𝜑 → ((𝑥 ∪ {𝑧}) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑥 ∪ {𝑧}) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑥 ∪ {𝑧}), (𝑋𝑦), 0 ))))))
23950, 59, 68, 77, 85, 238findcard2s 8761 . . . . 5 ((𝑋 supp 0 ) ∈ Fin → (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))))
24034, 239mpcom 38 . . . 4 (𝜑 → ((𝑋 supp 0 ) ⊆ 𝐷 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 ))))
24128, 240mpd 15 . . 3 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑦𝐷 ↦ if(𝑦 ∈ (𝑋 supp 0 ), (𝑋𝑦), 0 )))
24226, 241eqtr4d 2861 . 2 (𝜑𝑋 = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
24328resmptd 5910 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 )) = (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))))
244243oveq2d 7174 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
245117fmpttd 6881 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))):𝐷𝐵)
2466, 12, 15, 18suppssr 7863 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑘) = 0 )
247246oveq1d 7173 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
248 eldifi 4105 . . . . . . 7 (𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 )) → 𝑘𝐷)
249107fveq2d 6676 . . . . . . . . . 10 ((𝜑𝑘𝐷) → (0g𝑅) = (0g‘(Scalar‘𝑃)))
25016, 249syl5eq 2870 . . . . . . . . 9 ((𝜑𝑘𝐷) → 0 = (0g‘(Scalar‘𝑃)))
251250oveq1d 7173 . . . . . . . 8 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
252 eqid 2823 . . . . . . . . . 10 (0g‘(Scalar‘𝑃)) = (0g‘(Scalar‘𝑃))
2533, 113, 114, 252, 40lmod0vs 19669 . . . . . . . . 9 ((𝑃 ∈ LMod ∧ (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )) ∈ 𝐵) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
254104, 112, 253syl2anc 586 . . . . . . . 8 ((𝜑𝑘𝐷) → ((0g‘(Scalar‘𝑃)) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
255251, 254eqtrd 2858 . . . . . . 7 ((𝜑𝑘𝐷) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
256248, 255sylan2 594 . . . . . 6 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ( 0 · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
257247, 256eqtrd 2858 . . . . 5 ((𝜑𝑘 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))) = (0g𝑃))
258257, 15suppss2 7866 . . . 4 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))
25914mptex 6988 . . . . . . 7 (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V
260 funmpt 6395 . . . . . . 7 Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))
261 fvex 6685 . . . . . . 7 (0g𝑃) ∈ V
262259, 260, 2613pm3.2i 1335 . . . . . 6 ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V)
263262a1i 11 . . . . 5 (𝜑 → ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V))
264 suppssfifsupp 8850 . . . . 5 ((((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∈ V ∧ Fun (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ∧ (0g𝑃) ∈ V) ∧ ((𝑋 supp 0 ) ∈ Fin ∧ ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) supp (0g𝑃)) ⊆ (𝑋 supp 0 ))) → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
265263, 34, 258, 264syl12anc 834 . . . 4 (𝜑 → (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) finSupp (0g𝑃))
2663, 40, 95, 15, 245, 258, 265gsumres 19035 . . 3 (𝜑 → (𝑃 Σg ((𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 )))) ↾ (𝑋 supp 0 ))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
267244, 266eqtr3d 2860 . 2 (𝜑 → (𝑃 Σg (𝑘 ∈ (𝑋 supp 0 ) ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))) = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
268242, 267eqtrd 2858 1 (𝜑𝑋 = (𝑃 Σg (𝑘𝐷 ↦ ((𝑋𝑘) · (𝑦𝐷 ↦ if(𝑦 = 𝑘, 1 , 0 ))))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1537  wcel 2114  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  wss 3938  c0 4293  ifcif 4469  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ccnv 5556  cres 5559  cima 5560  Fun wfun 6351  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409   supp csupp 7832  m cmap 8408  Fincfn 8511   finSupp cfsupp 8835  cn 11640  0cn0 11900  Basecbs 16485  +gcplusg 16567  .rcmulr 16568  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715   Σg cgsu 16716  Grpcgrp 18105  CMndccmn 18908  1rcur 19253  Ringcrg 19299  LModclmod 19636   mPwSer cmps 20133   mPoly cmpl 20135
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-iin 4924  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-ofr 7412  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-ixp 8464  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-oi 8976  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-0g 16717  df-gsum 16718  df-mre 16859  df-mrc 16860  df-acs 16862  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-mhm 17958  df-submnd 17959  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mulg 18227  df-subg 18278  df-ghm 18358  df-cntz 18449  df-cmn 18910  df-abl 18911  df-mgp 19242  df-ur 19254  df-ring 19301  df-subrg 19535  df-lmod 19638  df-lss 19706  df-psr 20138  df-mpl 20140
This theorem is referenced by:  mplbas2  20253  mplcoe4  20285  ply1coe  20466
  Copyright terms: Public domain W3C validator