MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplcoe5lem Structured version   Visualization version   GIF version

Theorem mplcoe5lem 19515
Description: Lemma for mplcoe4 19551. (Contributed by AV, 7-Oct-2019.)
Hypotheses
Ref Expression
mplcoe1.p 𝑃 = (𝐼 mPoly 𝑅)
mplcoe1.d 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplcoe1.z 0 = (0g𝑅)
mplcoe1.o 1 = (1r𝑅)
mplcoe1.i (𝜑𝐼𝑊)
mplcoe2.g 𝐺 = (mulGrp‘𝑃)
mplcoe2.m = (.g𝐺)
mplcoe2.v 𝑉 = (𝐼 mVar 𝑅)
mplcoe5.r (𝜑𝑅 ∈ Ring)
mplcoe5.y (𝜑𝑌𝐷)
mplcoe5.c (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
mplcoe5.s (𝜑𝑆𝐼)
Assertion
Ref Expression
mplcoe5lem (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Distinct variable groups:   𝑥,𝑘, ,𝑦   1 ,𝑘   𝑥,𝑦, 1   𝑘,𝐺,𝑥   𝑓,𝑘,𝑥,𝑦,𝐼   𝜑,𝑘,𝑥,𝑦   𝑅,𝑓,𝑦   𝐷,𝑘,𝑥,𝑦   𝑃,𝑘,𝑥   𝑘,𝑉,𝑥   0 ,𝑓,𝑘,𝑥,𝑦   𝑓,𝑌,𝑘,𝑥,𝑦   𝑘,𝑊,𝑦   𝑦,𝐺   𝑦,𝑉   𝑦,   𝑆,𝑘,𝑦,𝑥
Allowed substitution hints:   𝜑(𝑓)   𝐷(𝑓)   𝑃(𝑦,𝑓)   𝑅(𝑥,𝑘)   𝑆(𝑓)   1 (𝑓)   (𝑓)   𝐺(𝑓)   𝑉(𝑓)   𝑊(𝑥,𝑓)

Proof of Theorem mplcoe5lem
Dummy variable 𝑙 is distinct from all other variables.
StepHypRef Expression
1 vex 3234 . . . . . 6 𝑥 ∈ V
2 eqid 2651 . . . . . . 7 (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) = (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))
32elrnmpt 5404 . . . . . 6 (𝑥 ∈ V → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
41, 3mp1i 13 . . . . 5 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘))))
5 vex 3234 . . . . . . . 8 𝑦 ∈ V
62elrnmpt 5404 . . . . . . . 8 (𝑦 ∈ V → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
75, 6mp1i 13 . . . . . . 7 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ↔ ∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘))))
8 fveq2 6229 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑌𝑘) = (𝑌𝑙))
9 fveq2 6229 . . . . . . . . . . 11 (𝑘 = 𝑙 → (𝑉𝑘) = (𝑉𝑙))
108, 9oveq12d 6708 . . . . . . . . . 10 (𝑘 = 𝑙 → ((𝑌𝑘) (𝑉𝑘)) = ((𝑌𝑙) (𝑉𝑙)))
1110eqeq2d 2661 . . . . . . . . 9 (𝑘 = 𝑙 → (𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ 𝑦 = ((𝑌𝑙) (𝑉𝑙))))
1211cbvrexv 3202 . . . . . . . 8 (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) ↔ ∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)))
13 eqid 2651 . . . . . . . . . . . . . 14 (Base‘𝑃) = (Base‘𝑃)
14 mplcoe2.g . . . . . . . . . . . . . . . 16 𝐺 = (mulGrp‘𝑃)
15 eqid 2651 . . . . . . . . . . . . . . . 16 (.r𝑃) = (.r𝑃)
1614, 15mgpplusg 18539 . . . . . . . . . . . . . . 15 (.r𝑃) = (+g𝐺)
1716eqcomi 2660 . . . . . . . . . . . . . 14 (+g𝐺) = (.r𝑃)
18 mplcoe2.m . . . . . . . . . . . . . 14 = (.g𝐺)
19 mplcoe1.i . . . . . . . . . . . . . . . . . 18 (𝜑𝐼𝑊)
20 mplcoe5.r . . . . . . . . . . . . . . . . . 18 (𝜑𝑅 ∈ Ring)
21 mplcoe1.p . . . . . . . . . . . . . . . . . . 19 𝑃 = (𝐼 mPoly 𝑅)
2221mplring 19500 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑅 ∈ Ring) → 𝑃 ∈ Ring)
2319, 20, 22syl2anc 694 . . . . . . . . . . . . . . . . 17 (𝜑𝑃 ∈ Ring)
24 ringsrg 18635 . . . . . . . . . . . . . . . . 17 (𝑃 ∈ Ring → 𝑃 ∈ SRing)
2523, 24syl 17 . . . . . . . . . . . . . . . 16 (𝜑𝑃 ∈ SRing)
2625adantr 480 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → 𝑃 ∈ SRing)
2726adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → 𝑃 ∈ SRing)
2814ringmgp 18599 . . . . . . . . . . . . . . . . . 18 (𝑃 ∈ Ring → 𝐺 ∈ Mnd)
2923, 28syl 17 . . . . . . . . . . . . . . . . 17 (𝜑𝐺 ∈ Mnd)
3029adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → 𝐺 ∈ Mnd)
31 mplcoe5.s . . . . . . . . . . . . . . . . . . 19 (𝜑𝑆𝐼)
3231sseld 3635 . . . . . . . . . . . . . . . . . 18 (𝜑 → (𝑙𝑆𝑙𝐼))
3332imdistani 726 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → (𝜑𝑙𝐼))
34 mplcoe5.y . . . . . . . . . . . . . . . . . . . 20 (𝜑𝑌𝐷)
35 mplcoe1.d . . . . . . . . . . . . . . . . . . . . . 22 𝐷 = {𝑓 ∈ (ℕ0𝑚 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
3635psrbag 19412 . . . . . . . . . . . . . . . . . . . . 21 (𝐼𝑊 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3719, 36syl 17 . . . . . . . . . . . . . . . . . . . 20 (𝜑 → (𝑌𝐷 ↔ (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin)))
3834, 37mpbid 222 . . . . . . . . . . . . . . . . . . 19 (𝜑 → (𝑌:𝐼⟶ℕ0 ∧ (𝑌 “ ℕ) ∈ Fin))
3938simpld 474 . . . . . . . . . . . . . . . . . 18 (𝜑𝑌:𝐼⟶ℕ0)
4039ffvelrnda 6399 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝐼) → (𝑌𝑙) ∈ ℕ0)
4133, 40syl 17 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑌𝑙) ∈ ℕ0)
42 mplcoe2.v . . . . . . . . . . . . . . . . 17 𝑉 = (𝐼 mVar 𝑅)
4319adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝐼𝑊)
4420adantr 480 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑅 ∈ Ring)
4531sselda 3636 . . . . . . . . . . . . . . . . 17 ((𝜑𝑙𝑆) → 𝑙𝐼)
4621, 42, 13, 43, 44, 45mvrcl 19497 . . . . . . . . . . . . . . . 16 ((𝜑𝑙𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
4714, 13mgpbas 18541 . . . . . . . . . . . . . . . . 17 (Base‘𝑃) = (Base‘𝐺)
4847, 18mulgnn0cl 17605 . . . . . . . . . . . . . . . 16 ((𝐺 ∈ Mnd ∧ (𝑌𝑙) ∈ ℕ0 ∧ (𝑉𝑙) ∈ (Base‘𝑃)) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
4930, 41, 46, 48syl3anc 1366 . . . . . . . . . . . . . . 15 ((𝜑𝑙𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
5049adantr 480 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑌𝑙) (𝑉𝑙)) ∈ (Base‘𝑃))
5119adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝐼𝑊)
5220adantr 480 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑅 ∈ Ring)
5331sselda 3636 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝑆) → 𝑘𝐼)
5421, 42, 13, 51, 52, 53mvrcl 19497 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5554adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝑃))
5639ffvelrnda 6399 . . . . . . . . . . . . . . . 16 ((𝜑𝑘𝐼) → (𝑌𝑘) ∈ ℕ0)
5753, 56syldan 486 . . . . . . . . . . . . . . 15 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5857adantlr 751 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
5946adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑉𝑙) ∈ (Base‘𝑃))
6041adantr 480 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑌𝑙) ∈ ℕ0)
61 mplcoe5.c . . . . . . . . . . . . . . . . 17 (𝜑 → ∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)))
62 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑙 → (𝑉𝑥) = (𝑉𝑙))
6362oveq2d 6706 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑦)(+g𝐺)(𝑉𝑙)))
6462oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 = 𝑙 → ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)))
6563, 64eqeq12d 2666 . . . . . . . . . . . . . . . . . . . 20 (𝑥 = 𝑙 → (((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦))))
66 fveq2 6229 . . . . . . . . . . . . . . . . . . . . . 22 (𝑦 = 𝑘 → (𝑉𝑦) = (𝑉𝑘))
6766oveq1d 6705 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑘)(+g𝐺)(𝑉𝑙)))
6866oveq2d 6706 . . . . . . . . . . . . . . . . . . . . 21 (𝑦 = 𝑘 → ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
6967, 68eqeq12d 2666 . . . . . . . . . . . . . . . . . . . 20 (𝑦 = 𝑘 → (((𝑉𝑦)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑦)) ↔ ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7065, 69rspc2v 3353 . . . . . . . . . . . . . . . . . . 19 ((𝑙𝐼𝑘𝐼) → (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7145, 53anim12dan 900 . . . . . . . . . . . . . . . . . . 19 ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → (𝑙𝐼𝑘𝐼))
7270, 71syl11 33 . . . . . . . . . . . . . . . . . 18 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → ((𝜑 ∧ (𝑙𝑆𝑘𝑆)) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7372expd 451 . . . . . . . . . . . . . . . . 17 (∀𝑥𝐼𝑦𝐼 ((𝑉𝑦)(+g𝐺)(𝑉𝑥)) = ((𝑉𝑥)(+g𝐺)(𝑉𝑦)) → (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))))
7461, 73mpcom 38 . . . . . . . . . . . . . . . 16 (𝜑 → ((𝑙𝑆𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘))))
7574impl 649 . . . . . . . . . . . . . . 15 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑉𝑘)(+g𝐺)(𝑉𝑙)) = ((𝑉𝑙)(+g𝐺)(𝑉𝑘)))
7613, 17, 14, 18, 27, 55, 59, 60, 75srgpcomp 18578 . . . . . . . . . . . . . 14 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑙) (𝑉𝑙))(+g𝐺)(𝑉𝑘)) = ((𝑉𝑘)(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
7713, 17, 14, 18, 27, 50, 55, 58, 76srgpcomp 18578 . . . . . . . . . . . . 13 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
78 oveq12 6699 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))))
79 oveq12 6699 . . . . . . . . . . . . . . 15 ((𝑦 = ((𝑌𝑙) (𝑉𝑙)) ∧ 𝑥 = ((𝑌𝑘) (𝑉𝑘))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
8079ancoms 468 . . . . . . . . . . . . . 14 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑦(+g𝐺)𝑥) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘))))
8178, 80eqeq12d 2666 . . . . . . . . . . . . 13 ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → ((𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥) ↔ (((𝑌𝑘) (𝑉𝑘))(+g𝐺)((𝑌𝑙) (𝑉𝑙))) = (((𝑌𝑙) (𝑉𝑙))(+g𝐺)((𝑌𝑘) (𝑉𝑘)))))
8277, 81syl5ibrcom 237 . . . . . . . . . . . 12 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → ((𝑥 = ((𝑌𝑘) (𝑉𝑘)) ∧ 𝑦 = ((𝑌𝑙) (𝑉𝑙))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
8382expd 451 . . . . . . . . . . 11 (((𝜑𝑙𝑆) ∧ 𝑘𝑆) → (𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8483rexlimdva 3060 . . . . . . . . . 10 ((𝜑𝑙𝑆) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8584com23 86 . . . . . . . . 9 ((𝜑𝑙𝑆) → (𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8685rexlimdva 3060 . . . . . . . 8 (𝜑 → (∃𝑙𝑆 𝑦 = ((𝑌𝑙) (𝑉𝑙)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8712, 86syl5bi 232 . . . . . . 7 (𝜑 → (∃𝑘𝑆 𝑦 = ((𝑌𝑘) (𝑉𝑘)) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
887, 87sylbid 230 . . . . . 6 (𝜑 → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
8988com23 86 . . . . 5 (𝜑 → (∃𝑘𝑆 𝑥 = ((𝑌𝑘) (𝑉𝑘)) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
904, 89sylbid 230 . . . 4 (𝜑 → (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))))
9190imp32 448 . . 3 ((𝜑 ∧ (𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ∧ 𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))))) → (𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9291ralrimivva 3000 . 2 (𝜑 → ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥))
9329adantr 480 . . . . . 6 ((𝜑𝑘𝑆) → 𝐺 ∈ Mnd)
9431sseld 3635 . . . . . . . 8 (𝜑 → (𝑘𝑆𝑘𝐼))
9594imdistani 726 . . . . . . 7 ((𝜑𝑘𝑆) → (𝜑𝑘𝐼))
9695, 56syl 17 . . . . . 6 ((𝜑𝑘𝑆) → (𝑌𝑘) ∈ ℕ0)
9754, 47syl6eleq 2740 . . . . . 6 ((𝜑𝑘𝑆) → (𝑉𝑘) ∈ (Base‘𝐺))
98 eqid 2651 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
9998, 18mulgnn0cl 17605 . . . . . 6 ((𝐺 ∈ Mnd ∧ (𝑌𝑘) ∈ ℕ0 ∧ (𝑉𝑘) ∈ (Base‘𝐺)) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
10093, 96, 97, 99syl3anc 1366 . . . . 5 ((𝜑𝑘𝑆) → ((𝑌𝑘) (𝑉𝑘)) ∈ (Base‘𝐺))
101100, 2fmptd 6425 . . . 4 (𝜑 → (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺))
102 frn 6091 . . . 4 ((𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))):𝑆⟶(Base‘𝐺) → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
103101, 102syl 17 . . 3 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺))
104 eqid 2651 . . . 4 (+g𝐺) = (+g𝐺)
105 eqid 2651 . . . 4 (Cntz‘𝐺) = (Cntz‘𝐺)
10698, 104, 105sscntz 17805 . . 3 ((ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺) ∧ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ (Base‘𝐺)) → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
107103, 103, 106syl2anc 694 . 2 (𝜑 → (ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))) ↔ ∀𝑥 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))∀𝑦 ∈ ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))(𝑥(+g𝐺)𝑦) = (𝑦(+g𝐺)𝑥)))
10892, 107mpbird 247 1 (𝜑 → ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘))) ⊆ ((Cntz‘𝐺)‘ran (𝑘𝑆 ↦ ((𝑌𝑘) (𝑉𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1523  wcel 2030  wral 2941  wrex 2942  {crab 2945  Vcvv 3231  wss 3607  cmpt 4762  ccnv 5142  ran crn 5144  cima 5146  wf 5922  cfv 5926  (class class class)co 6690  𝑚 cmap 7899  Fincfn 7997  cn 11058  0cn0 11330  Basecbs 15904  +gcplusg 15988  .rcmulr 15989  0gc0g 16147  Mndcmnd 17341  .gcmg 17587  Cntzccntz 17794  mulGrpcmgp 18535  1rcur 18547  SRingcsrg 18551  Ringcrg 18593   mVar cmvr 19400   mPoly cmpl 19401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-inf2 8576  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-int 4508  df-iun 4554  df-iin 4555  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-se 5103  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-isom 5935  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-of 6939  df-ofr 6940  df-om 7108  df-1st 7210  df-2nd 7211  df-supp 7341  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-1o 7605  df-2o 7606  df-oadd 7609  df-er 7787  df-map 7901  df-pm 7902  df-ixp 7951  df-en 7998  df-dom 7999  df-sdom 8000  df-fin 8001  df-fsupp 8317  df-oi 8456  df-card 8803  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-5 11120  df-6 11121  df-7 11122  df-8 11123  df-9 11124  df-n0 11331  df-z 11416  df-uz 11726  df-fz 12365  df-fzo 12505  df-seq 12842  df-hash 13158  df-struct 15906  df-ndx 15907  df-slot 15908  df-base 15910  df-sets 15911  df-ress 15912  df-plusg 16001  df-mulr 16002  df-sca 16004  df-vsca 16005  df-tset 16007  df-0g 16149  df-gsum 16150  df-mre 16293  df-mrc 16294  df-acs 16296  df-mgm 17289  df-sgrp 17331  df-mnd 17342  df-mhm 17382  df-submnd 17383  df-grp 17472  df-minusg 17473  df-mulg 17588  df-subg 17638  df-ghm 17705  df-cntz 17796  df-cmn 18241  df-abl 18242  df-mgp 18536  df-ur 18548  df-srg 18552  df-ring 18595  df-subrg 18826  df-psr 19404  df-mvr 19405  df-mpl 19406
This theorem is referenced by:  mplcoe5  19516
  Copyright terms: Public domain W3C validator