![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mplmon2cl | Structured version Visualization version GIF version |
Description: A scaled monomial is a polynomial. (Contributed by Stefan O'Rear, 8-Mar-2015.) |
Ref | Expression |
---|---|
mplmon2cl.p | ⊢ 𝑃 = (𝐼 mPoly 𝑅) |
mplmon2cl.d | ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} |
mplmon2cl.z | ⊢ 0 = (0g‘𝑅) |
mplmon2cl.c | ⊢ 𝐶 = (Base‘𝑅) |
mplmon2cl.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
mplmon2cl.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
mplmon2cl.b | ⊢ 𝐵 = (Base‘𝑃) |
mplmon2cl.x | ⊢ (𝜑 → 𝑋 ∈ 𝐶) |
mplmon2cl.k | ⊢ (𝜑 → 𝐾 ∈ 𝐷) |
Ref | Expression |
---|---|
mplmon2cl | ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mplmon2cl.p | . . 3 ⊢ 𝑃 = (𝐼 mPoly 𝑅) | |
2 | eqid 2760 | . . 3 ⊢ ( ·𝑠 ‘𝑃) = ( ·𝑠 ‘𝑃) | |
3 | mplmon2cl.d | . . 3 ⊢ 𝐷 = {𝑓 ∈ (ℕ0 ↑𝑚 𝐼) ∣ (◡𝑓 “ ℕ) ∈ Fin} | |
4 | eqid 2760 | . . 3 ⊢ (1r‘𝑅) = (1r‘𝑅) | |
5 | mplmon2cl.z | . . 3 ⊢ 0 = (0g‘𝑅) | |
6 | mplmon2cl.c | . . 3 ⊢ 𝐶 = (Base‘𝑅) | |
7 | mplmon2cl.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
8 | mplmon2cl.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
9 | mplmon2cl.k | . . 3 ⊢ (𝜑 → 𝐾 ∈ 𝐷) | |
10 | mplmon2cl.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐶) | |
11 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 | mplmon2 19695 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) = (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 ))) |
12 | 1 | mpllmod 19653 | . . . 4 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑅 ∈ Ring) → 𝑃 ∈ LMod) |
13 | 7, 8, 12 | syl2anc 696 | . . 3 ⊢ (𝜑 → 𝑃 ∈ LMod) |
14 | 1, 7, 8 | mplsca 19647 | . . . . . 6 ⊢ (𝜑 → 𝑅 = (Scalar‘𝑃)) |
15 | 14 | fveq2d 6356 | . . . . 5 ⊢ (𝜑 → (Base‘𝑅) = (Base‘(Scalar‘𝑃))) |
16 | 6, 15 | syl5eq 2806 | . . . 4 ⊢ (𝜑 → 𝐶 = (Base‘(Scalar‘𝑃))) |
17 | 10, 16 | eleqtrd 2841 | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘(Scalar‘𝑃))) |
18 | mplmon2cl.b | . . . 4 ⊢ 𝐵 = (Base‘𝑃) | |
19 | 1, 18, 5, 4, 3, 7, 8, 9 | mplmon 19665 | . . 3 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) |
20 | eqid 2760 | . . . 4 ⊢ (Scalar‘𝑃) = (Scalar‘𝑃) | |
21 | eqid 2760 | . . . 4 ⊢ (Base‘(Scalar‘𝑃)) = (Base‘(Scalar‘𝑃)) | |
22 | 18, 20, 2, 21 | lmodvscl 19082 | . . 3 ⊢ ((𝑃 ∈ LMod ∧ 𝑋 ∈ (Base‘(Scalar‘𝑃)) ∧ (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 )) ∈ 𝐵) → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
23 | 13, 17, 19, 22 | syl3anc 1477 | . 2 ⊢ (𝜑 → (𝑋( ·𝑠 ‘𝑃)(𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, (1r‘𝑅), 0 ))) ∈ 𝐵) |
24 | 11, 23 | eqeltrrd 2840 | 1 ⊢ (𝜑 → (𝑦 ∈ 𝐷 ↦ if(𝑦 = 𝐾, 𝑋, 0 )) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2139 {crab 3054 ifcif 4230 ↦ cmpt 4881 ◡ccnv 5265 “ cima 5269 ‘cfv 6049 (class class class)co 6813 ↑𝑚 cmap 8023 Fincfn 8121 ℕcn 11212 ℕ0cn0 11484 Basecbs 16059 Scalarcsca 16146 ·𝑠 cvsca 16147 0gc0g 16302 1rcur 18701 Ringcrg 18747 LModclmod 19065 mPoly cmpl 19555 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-supp 7464 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-fsupp 8441 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-7 11276 df-8 11277 df-9 11278 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-tset 16162 df-0g 16304 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-grp 17626 df-minusg 17627 df-sbg 17628 df-subg 17792 df-mgp 18690 df-ur 18702 df-ring 18749 df-lmod 19067 df-lss 19135 df-psr 19558 df-mpl 19560 |
This theorem is referenced by: evlslem2 19714 evlslem3 19716 |
Copyright terms: Public domain | W3C validator |