MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubglem Structured version   Visualization version   GIF version

Theorem mplsubglem 20216
Description: If 𝐴 is an ideal of sets (a nonempty collection closed under subset and binary union) of the set 𝐷 of finite bags (the primary applications being 𝐴 = Fin and 𝐴 = 𝒫 𝐵 for some 𝐵), then the set of all power series whose coefficient functions are supported on an element of 𝐴 is a subgroup of the set of all power series. (Contributed by Mario Carneiro, 12-Jan-2015.) (Revised by AV, 16-Jul-2019.)
Hypotheses
Ref Expression
mplsubglem.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubglem.b 𝐵 = (Base‘𝑆)
mplsubglem.z 0 = (0g𝑅)
mplsubglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubglem.i (𝜑𝐼𝑊)
mplsubglem.0 (𝜑 → ∅ ∈ 𝐴)
mplsubglem.a ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
mplsubglem.y ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
mplsubglem.u (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
mplsubglem.r (𝜑𝑅 ∈ Grp)
Assertion
Ref Expression
mplsubglem (𝜑𝑈 ∈ (SubGrp‘𝑆))
Distinct variable groups:   𝑓,𝑔,𝑥,𝑦, 0   𝐴,𝑓,𝑔,𝑥,𝑦   𝐵,𝑓,𝑔   𝐷,𝑔   𝑓,𝐼   𝜑,𝑥,𝑦   𝑆,𝑓,𝑔,𝑦
Allowed substitution hints:   𝜑(𝑓,𝑔)   𝐵(𝑥,𝑦)   𝐷(𝑥,𝑦,𝑓)   𝑅(𝑥,𝑦,𝑓,𝑔)   𝑆(𝑥)   𝑈(𝑥,𝑦,𝑓,𝑔)   𝐼(𝑥,𝑦,𝑔)   𝑊(𝑥,𝑦,𝑓,𝑔)

Proof of Theorem mplsubglem
Dummy variables 𝑘 𝑢 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubglem.u . . 3 (𝜑𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
2 ssrab2 4058 . . 3 {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ⊆ 𝐵
31, 2eqsstrdi 4023 . 2 (𝜑𝑈𝐵)
4 mplsubglem.s . . . . 5 𝑆 = (𝐼 mPwSer 𝑅)
5 mplsubglem.i . . . . 5 (𝜑𝐼𝑊)
6 mplsubglem.r . . . . 5 (𝜑𝑅 ∈ Grp)
7 mplsubglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
8 mplsubglem.z . . . . 5 0 = (0g𝑅)
9 mplsubglem.b . . . . 5 𝐵 = (Base‘𝑆)
104, 5, 6, 7, 8, 9psr0cl 20176 . . . 4 (𝜑 → (𝐷 × { 0 }) ∈ 𝐵)
11 eqid 2823 . . . . . . . . 9 (Base‘𝑅) = (Base‘𝑅)
1211, 8grpidcl 18133 . . . . . . . 8 (𝑅 ∈ Grp → 0 ∈ (Base‘𝑅))
13 fconst6g 6570 . . . . . . . 8 ( 0 ∈ (Base‘𝑅) → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
146, 12, 133syl 18 . . . . . . 7 (𝜑 → (𝐷 × { 0 }):𝐷⟶(Base‘𝑅))
15 eldifi 4105 . . . . . . . . 9 (𝑢 ∈ (𝐷 ∖ ∅) → 𝑢𝐷)
168fvexi 6686 . . . . . . . . . 10 0 ∈ V
1716fvconst2 6968 . . . . . . . . 9 (𝑢𝐷 → ((𝐷 × { 0 })‘𝑢) = 0 )
1815, 17syl 17 . . . . . . . 8 (𝑢 ∈ (𝐷 ∖ ∅) → ((𝐷 × { 0 })‘𝑢) = 0 )
1918adantl 484 . . . . . . 7 ((𝜑𝑢 ∈ (𝐷 ∖ ∅)) → ((𝐷 × { 0 })‘𝑢) = 0 )
2014, 19suppss 7862 . . . . . 6 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ⊆ ∅)
21 ss0 4354 . . . . . 6 (((𝐷 × { 0 }) supp 0 ) ⊆ ∅ → ((𝐷 × { 0 }) supp 0 ) = ∅)
2220, 21syl 17 . . . . 5 (𝜑 → ((𝐷 × { 0 }) supp 0 ) = ∅)
23 mplsubglem.0 . . . . 5 (𝜑 → ∅ ∈ 𝐴)
2422, 23eqeltrd 2915 . . . 4 (𝜑 → ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)
251eleq2d 2900 . . . . 5 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ (𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
26 oveq1 7165 . . . . . . 7 (𝑔 = (𝐷 × { 0 }) → (𝑔 supp 0 ) = ((𝐷 × { 0 }) supp 0 ))
2726eleq1d 2899 . . . . . 6 (𝑔 = (𝐷 × { 0 }) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2827elrab 3682 . . . . 5 ((𝐷 × { 0 }) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴))
2925, 28syl6bb 289 . . . 4 (𝜑 → ((𝐷 × { 0 }) ∈ 𝑈 ↔ ((𝐷 × { 0 }) ∈ 𝐵 ∧ ((𝐷 × { 0 }) supp 0 ) ∈ 𝐴)))
3010, 24, 29mpbir2and 711 . . 3 (𝜑 → (𝐷 × { 0 }) ∈ 𝑈)
3130ne0d 4303 . 2 (𝜑𝑈 ≠ ∅)
32 eqid 2823 . . . . . . 7 (+g𝑆) = (+g𝑆)
336ad2antrr 724 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑅 ∈ Grp)
341eleq2d 2900 . . . . . . . . . . 11 (𝜑 → (𝑢𝑈𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
35 oveq1 7165 . . . . . . . . . . . . 13 (𝑔 = 𝑢 → (𝑔 supp 0 ) = (𝑢 supp 0 ))
3635eleq1d 2899 . . . . . . . . . . . 12 (𝑔 = 𝑢 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑢 supp 0 ) ∈ 𝐴))
3736elrab 3682 . . . . . . . . . . 11 (𝑢 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
3834, 37syl6bb 289 . . . . . . . . . 10 (𝜑 → (𝑢𝑈 ↔ (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴)))
3938biimpa 479 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑢𝐵 ∧ (𝑢 supp 0 ) ∈ 𝐴))
4039simpld 497 . . . . . . . 8 ((𝜑𝑢𝑈) → 𝑢𝐵)
4140adantr 483 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢𝐵)
421adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
4342eleq2d 2900 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑣𝑈𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
44 oveq1 7165 . . . . . . . . . . . 12 (𝑔 = 𝑣 → (𝑔 supp 0 ) = (𝑣 supp 0 ))
4544eleq1d 2899 . . . . . . . . . . 11 (𝑔 = 𝑣 → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (𝑣 supp 0 ) ∈ 𝐴))
4645elrab 3682 . . . . . . . . . 10 (𝑣 ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
4743, 46syl6bb 289 . . . . . . . . 9 ((𝜑𝑢𝑈) → (𝑣𝑈 ↔ (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴)))
4847biimpa 479 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣𝐵 ∧ (𝑣 supp 0 ) ∈ 𝐴))
4948simpld 497 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣𝐵)
504, 9, 32, 33, 41, 49psraddcl 20165 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝐵)
51 ovexd 7193 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V)
52 sseq2 3995 . . . . . . . . . 10 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝑦𝑥𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
5352imbi1d 344 . . . . . . . . 9 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
5453albidv 1921 . . . . . . . 8 (𝑥 = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴)))
55 mplsubglem.y . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝑥)) → 𝑦𝐴)
5655expr 459 . . . . . . . . . . 11 ((𝜑𝑥𝐴) → (𝑦𝑥𝑦𝐴))
5756alrimiv 1928 . . . . . . . . . 10 ((𝜑𝑥𝐴) → ∀𝑦(𝑦𝑥𝑦𝐴))
5857ralrimiva 3184 . . . . . . . . 9 (𝜑 → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
5958ad2antrr 724 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
6039simprd 498 . . . . . . . . . 10 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6160adantr 483 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢 supp 0 ) ∈ 𝐴)
6248simprd 498 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ∈ 𝐴)
63 mplsubglem.a . . . . . . . . . . 11 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → (𝑥𝑦) ∈ 𝐴)
6463ralrimivva 3193 . . . . . . . . . 10 (𝜑 → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
6564ad2antrr 724 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴)
66 uneq1 4134 . . . . . . . . . . 11 (𝑥 = (𝑢 supp 0 ) → (𝑥𝑦) = ((𝑢 supp 0 ) ∪ 𝑦))
6766eleq1d 2899 . . . . . . . . . 10 (𝑥 = (𝑢 supp 0 ) → ((𝑥𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴))
68 uneq2 4135 . . . . . . . . . . 11 (𝑦 = (𝑣 supp 0 ) → ((𝑢 supp 0 ) ∪ 𝑦) = ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
6968eleq1d 2899 . . . . . . . . . 10 (𝑦 = (𝑣 supp 0 ) → (((𝑢 supp 0 ) ∪ 𝑦) ∈ 𝐴 ↔ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴))
7067, 69rspc2va 3636 . . . . . . . . 9 ((((𝑢 supp 0 ) ∈ 𝐴 ∧ (𝑣 supp 0 ) ∈ 𝐴) ∧ ∀𝑥𝐴𝑦𝐴 (𝑥𝑦) ∈ 𝐴) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7161, 62, 65, 70syl21anc 835 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ∈ 𝐴)
7254, 59, 71rspcdva 3627 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴))
734, 11, 7, 9, 50psrelbas 20161 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣):𝐷⟶(Base‘𝑅))
74 eqid 2823 . . . . . . . . . . . 12 (+g𝑅) = (+g𝑅)
754, 9, 74, 32, 41, 49psradd 20164 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) = (𝑢f (+g𝑅)𝑣))
7675fveq1d 6674 . . . . . . . . . 10 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
7776adantr 483 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = ((𝑢f (+g𝑅)𝑣)‘𝑘))
78 eldifi 4105 . . . . . . . . . 10 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘𝐷)
794, 11, 7, 9, 40psrelbas 20161 . . . . . . . . . . . . 13 ((𝜑𝑢𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8079adantr 483 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢:𝐷⟶(Base‘𝑅))
8180ffnd 6517 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑢 Fn 𝐷)
824, 11, 7, 9, 49psrelbas 20161 . . . . . . . . . . . 12 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣:𝐷⟶(Base‘𝑅))
8382ffnd 6517 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑣 Fn 𝐷)
84 ovex 7191 . . . . . . . . . . . . 13 (ℕ0m 𝐼) ∈ V
857, 84rabex2 5239 . . . . . . . . . . . 12 𝐷 ∈ V
8685a1i 11 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝐷 ∈ V)
87 inidm 4197 . . . . . . . . . . 11 (𝐷𝐷) = 𝐷
88 eqidd 2824 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑢𝑘) = (𝑢𝑘))
89 eqidd 2824 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → (𝑣𝑘) = (𝑣𝑘))
9081, 83, 86, 86, 87, 88, 89ofval 7420 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘𝐷) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
9178, 90sylan2 594 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢f (+g𝑅)𝑣)‘𝑘) = ((𝑢𝑘)(+g𝑅)(𝑣𝑘)))
92 ssun1 4150 . . . . . . . . . . . . . 14 (𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
93 sscon 4117 . . . . . . . . . . . . . 14 ((𝑢 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 )))
9492, 93ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑢 supp 0 ))
9594sseli 3965 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 )))
96 ssidd 3992 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → (𝑢 supp 0 ) ⊆ (𝑢 supp 0 ))
9785a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 𝐷 ∈ V)
9816a1i 11 . . . . . . . . . . . . . 14 ((𝜑𝑢𝑈) → 0 ∈ V)
9979, 96, 97, 98suppssr 7863 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
10099adantlr 713 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (𝑢𝑘) = 0 )
10195, 100sylan2 594 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑢𝑘) = 0 )
102 ssun2 4151 . . . . . . . . . . . . . 14 (𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))
103 sscon 4117 . . . . . . . . . . . . . 14 ((𝑣 supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 )))
104102, 103ax-mp 5 . . . . . . . . . . . . 13 (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) ⊆ (𝐷 ∖ (𝑣 supp 0 ))
105104sseli 3965 . . . . . . . . . . . 12 (𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))) → 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 )))
106 ssidd 3992 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑣 supp 0 ) ⊆ (𝑣 supp 0 ))
10716a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 0 ∈ V)
10882, 106, 86, 107suppssr 7863 . . . . . . . . . . . 12 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑣 supp 0 ))) → (𝑣𝑘) = 0 )
109105, 108sylan2 594 . . . . . . . . . . 11 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → (𝑣𝑘) = 0 )
110101, 109oveq12d 7176 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = ( 0 (+g𝑅) 0 ))
11111, 74, 8grplid 18135 . . . . . . . . . . . 12 ((𝑅 ∈ Grp ∧ 0 ∈ (Base‘𝑅)) → ( 0 (+g𝑅) 0 ) = 0 )
11233, 12, 111syl2anc2 587 . . . . . . . . . . 11 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ( 0 (+g𝑅) 0 ) = 0 )
113112adantr 483 . . . . . . . . . 10 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ( 0 (+g𝑅) 0 ) = 0 )
114110, 113eqtrd 2858 . . . . . . . . 9 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢𝑘)(+g𝑅)(𝑣𝑘)) = 0 )
11577, 91, 1143eqtrd 2862 . . . . . . . 8 ((((𝜑𝑢𝑈) ∧ 𝑣𝑈) ∧ 𝑘 ∈ (𝐷 ∖ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))) → ((𝑢(+g𝑆)𝑣)‘𝑘) = 0 )
11673, 115suppss 7862 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )))
117 sseq1 3994 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 ))))
118 eleq1 2902 . . . . . . . . 9 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → (𝑦𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
119117, 118imbi12d 347 . . . . . . . 8 (𝑦 = ((𝑢(+g𝑆)𝑣) supp 0 ) → ((𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) ↔ (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
120119spcgv 3597 . . . . . . 7 (((𝑢(+g𝑆)𝑣) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → 𝑦𝐴) → (((𝑢(+g𝑆)𝑣) supp 0 ) ⊆ ((𝑢 supp 0 ) ∪ (𝑣 supp 0 )) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
12151, 72, 116, 120syl3c 66 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)
1221ad2antrr 724 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → 𝑈 = {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴})
123122eleq2d 2900 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ (𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
124 oveq1 7165 . . . . . . . . 9 (𝑔 = (𝑢(+g𝑆)𝑣) → (𝑔 supp 0 ) = ((𝑢(+g𝑆)𝑣) supp 0 ))
125124eleq1d 2899 . . . . . . . 8 (𝑔 = (𝑢(+g𝑆)𝑣) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
126125elrab 3682 . . . . . . 7 ((𝑢(+g𝑆)𝑣) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴))
127123, 126syl6bb 289 . . . . . 6 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → ((𝑢(+g𝑆)𝑣) ∈ 𝑈 ↔ ((𝑢(+g𝑆)𝑣) ∈ 𝐵 ∧ ((𝑢(+g𝑆)𝑣) supp 0 ) ∈ 𝐴)))
12850, 121, 127mpbir2and 711 . . . . 5 (((𝜑𝑢𝑈) ∧ 𝑣𝑈) → (𝑢(+g𝑆)𝑣) ∈ 𝑈)
129128ralrimiva 3184 . . . 4 ((𝜑𝑢𝑈) → ∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈)
1304, 5, 6psrgrp 20180 . . . . . 6 (𝜑𝑆 ∈ Grp)
131 eqid 2823 . . . . . . 7 (invg𝑆) = (invg𝑆)
1329, 131grpinvcl 18153 . . . . . 6 ((𝑆 ∈ Grp ∧ 𝑢𝐵) → ((invg𝑆)‘𝑢) ∈ 𝐵)
133130, 40, 132syl2an2r 683 . . . . 5 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝐵)
134 ovexd 7193 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ V)
135 sseq2 3995 . . . . . . . . 9 (𝑥 = (𝑢 supp 0 ) → (𝑦𝑥𝑦 ⊆ (𝑢 supp 0 )))
136135imbi1d 344 . . . . . . . 8 (𝑥 = (𝑢 supp 0 ) → ((𝑦𝑥𝑦𝐴) ↔ (𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
137136albidv 1921 . . . . . . 7 (𝑥 = (𝑢 supp 0 ) → (∀𝑦(𝑦𝑥𝑦𝐴) ↔ ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴)))
13858adantr 483 . . . . . . 7 ((𝜑𝑢𝑈) → ∀𝑥𝐴𝑦(𝑦𝑥𝑦𝐴))
139137, 138, 60rspcdva 3627 . . . . . 6 ((𝜑𝑢𝑈) → ∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴))
1404, 11, 7, 9, 133psrelbas 20161 . . . . . . 7 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢):𝐷⟶(Base‘𝑅))
1415adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝐼𝑊)
1426adantr 483 . . . . . . . . . . 11 ((𝜑𝑢𝑈) → 𝑅 ∈ Grp)
143 eqid 2823 . . . . . . . . . . 11 (invg𝑅) = (invg𝑅)
1444, 141, 142, 7, 143, 9, 131, 40psrneg 20182 . . . . . . . . . 10 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) = ((invg𝑅) ∘ 𝑢))
145144adantr 483 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → ((invg𝑆)‘𝑢) = ((invg𝑅) ∘ 𝑢))
146145fveq1d 6674 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (((invg𝑆)‘𝑢)‘𝑘) = (((invg𝑅) ∘ 𝑢)‘𝑘))
147 eldifi 4105 . . . . . . . . 9 (𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 )) → 𝑘𝐷)
148 fvco3 6762 . . . . . . . . 9 ((𝑢:𝐷⟶(Base‘𝑅) ∧ 𝑘𝐷) → (((invg𝑅) ∘ 𝑢)‘𝑘) = ((invg𝑅)‘(𝑢𝑘)))
14979, 147, 148syl2an 597 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (((invg𝑅) ∘ 𝑢)‘𝑘) = ((invg𝑅)‘(𝑢𝑘)))
15099fveq2d 6676 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → ((invg𝑅)‘(𝑢𝑘)) = ((invg𝑅)‘ 0 ))
1518, 143grpinvid 18162 . . . . . . . . . . 11 (𝑅 ∈ Grp → ((invg𝑅)‘ 0 ) = 0 )
152142, 151syl 17 . . . . . . . . . 10 ((𝜑𝑢𝑈) → ((invg𝑅)‘ 0 ) = 0 )
153152adantr 483 . . . . . . . . 9 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → ((invg𝑅)‘ 0 ) = 0 )
154150, 153eqtrd 2858 . . . . . . . 8 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → ((invg𝑅)‘(𝑢𝑘)) = 0 )
155146, 149, 1543eqtrd 2862 . . . . . . 7 (((𝜑𝑢𝑈) ∧ 𝑘 ∈ (𝐷 ∖ (𝑢 supp 0 ))) → (((invg𝑆)‘𝑢)‘𝑘) = 0 )
156140, 155suppss 7862 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ))
157 sseq1 3994 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦 ⊆ (𝑢 supp 0 ) ↔ (((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 )))
158 eleq1 2902 . . . . . . . 8 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → (𝑦𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
159157, 158imbi12d 347 . . . . . . 7 (𝑦 = (((invg𝑆)‘𝑢) supp 0 ) → ((𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) ↔ ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
160159spcgv 3597 . . . . . 6 ((((invg𝑆)‘𝑢) supp 0 ) ∈ V → (∀𝑦(𝑦 ⊆ (𝑢 supp 0 ) → 𝑦𝐴) → ((((invg𝑆)‘𝑢) supp 0 ) ⊆ (𝑢 supp 0 ) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
161134, 139, 156, 160syl3c 66 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)
16242eleq2d 2900 . . . . . 6 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ ((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴}))
163 oveq1 7165 . . . . . . . 8 (𝑔 = ((invg𝑆)‘𝑢) → (𝑔 supp 0 ) = (((invg𝑆)‘𝑢) supp 0 ))
164163eleq1d 2899 . . . . . . 7 (𝑔 = ((invg𝑆)‘𝑢) → ((𝑔 supp 0 ) ∈ 𝐴 ↔ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
165164elrab 3682 . . . . . 6 (((invg𝑆)‘𝑢) ∈ {𝑔𝐵 ∣ (𝑔 supp 0 ) ∈ 𝐴} ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴))
166162, 165syl6bb 289 . . . . 5 ((𝜑𝑢𝑈) → (((invg𝑆)‘𝑢) ∈ 𝑈 ↔ (((invg𝑆)‘𝑢) ∈ 𝐵 ∧ (((invg𝑆)‘𝑢) supp 0 ) ∈ 𝐴)))
167133, 161, 166mpbir2and 711 . . . 4 ((𝜑𝑢𝑈) → ((invg𝑆)‘𝑢) ∈ 𝑈)
168129, 167jca 514 . . 3 ((𝜑𝑢𝑈) → (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
169168ralrimiva 3184 . 2 (𝜑 → ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))
1709, 32, 131issubg2 18296 . . 3 (𝑆 ∈ Grp → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
171130, 170syl 17 . 2 (𝜑 → (𝑈 ∈ (SubGrp‘𝑆) ↔ (𝑈𝐵𝑈 ≠ ∅ ∧ ∀𝑢𝑈 (∀𝑣𝑈 (𝑢(+g𝑆)𝑣) ∈ 𝑈 ∧ ((invg𝑆)‘𝑢) ∈ 𝑈))))
1723, 31, 169, 171mpbir3and 1338 1 (𝜑𝑈 ∈ (SubGrp‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083  wal 1535   = wceq 1537  wcel 2114  wne 3018  wral 3140  {crab 3144  Vcvv 3496  cdif 3935  cun 3936  wss 3938  c0 4293  {csn 4569   × cxp 5555  ccnv 5556  cima 5560  ccom 5561  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409   supp csupp 7832  m cmap 8408  Fincfn 8511  cn 11640  0cn0 11900  Basecbs 16485  +gcplusg 16567  0gc0g 16715  Grpcgrp 18105  invgcminusg 18106  SubGrpcsubg 18275   mPwSer cmps 20133
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-supp 7833  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-map 8410  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-fsupp 8836  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-uz 12247  df-fz 12896  df-struct 16487  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-sca 16583  df-vsca 16584  df-tset 16586  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-subg 18278  df-psr 20138
This theorem is referenced by:  mpllsslem  20217  mplsubg  20219
  Copyright terms: Public domain W3C validator