MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mplsubrglem Structured version   Visualization version   GIF version

Theorem mplsubrglem 20213
Description: Lemma for mplsubrg 20214. (Contributed by Mario Carneiro, 9-Jan-2015.) (Revised by AV, 18-Jul-2019.)
Hypotheses
Ref Expression
mplsubg.s 𝑆 = (𝐼 mPwSer 𝑅)
mplsubg.p 𝑃 = (𝐼 mPoly 𝑅)
mplsubg.u 𝑈 = (Base‘𝑃)
mplsubg.i (𝜑𝐼𝑊)
mpllss.r (𝜑𝑅 ∈ Ring)
mplsubrglem.d 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
mplsubrglem.z 0 = (0g𝑅)
mplsubrglem.p 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
mplsubrglem.t · = (.r𝑅)
mplsubrglem.x (𝜑𝑋𝑈)
mplsubrglem.y (𝜑𝑌𝑈)
Assertion
Ref Expression
mplsubrglem (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Distinct variable groups:   𝑓,𝐼   𝑅,𝑓   𝑆,𝑓   𝑓,𝑋   𝑓,𝑌   0 ,𝑓
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐷(𝑓)   𝑃(𝑓)   · (𝑓)   𝑈(𝑓)   𝑊(𝑓)

Proof of Theorem mplsubrglem
Dummy variables 𝑘 𝑛 𝑥 𝑔 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mplsubg.s . . 3 𝑆 = (𝐼 mPwSer 𝑅)
2 eqid 2821 . . 3 (Base‘𝑆) = (Base‘𝑆)
3 eqid 2821 . . 3 (.r𝑆) = (.r𝑆)
4 mpllss.r . . 3 (𝜑𝑅 ∈ Ring)
5 mplsubg.p . . . . 5 𝑃 = (𝐼 mPoly 𝑅)
6 mplsubg.u . . . . 5 𝑈 = (Base‘𝑃)
75, 1, 6, 2mplbasss 20206 . . . 4 𝑈 ⊆ (Base‘𝑆)
8 mplsubrglem.x . . . 4 (𝜑𝑋𝑈)
97, 8sseldi 3964 . . 3 (𝜑𝑋 ∈ (Base‘𝑆))
10 mplsubrglem.y . . . 4 (𝜑𝑌𝑈)
117, 10sseldi 3964 . . 3 (𝜑𝑌 ∈ (Base‘𝑆))
121, 2, 3, 4, 9, 11psrmulcl 20162 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆))
13 ovexd 7185 . . 3 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ V)
141, 2psrelbasfun 20154 . . . 4 ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) → Fun (𝑋(.r𝑆)𝑌))
1512, 14syl 17 . . 3 (𝜑 → Fun (𝑋(.r𝑆)𝑌))
16 mplsubrglem.z . . . . 5 0 = (0g𝑅)
1716fvexi 6678 . . . 4 0 ∈ V
1817a1i 11 . . 3 (𝜑0 ∈ V)
19 mplsubrglem.p . . . . 5 𝐴 = ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
20 df-ima 5562 . . . . 5 ( ∘f + “ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
2119, 20eqtri 2844 . . . 4 𝐴 = ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
225, 1, 2, 16, 6mplelbas 20204 . . . . . . . 8 (𝑋𝑈 ↔ (𝑋 ∈ (Base‘𝑆) ∧ 𝑋 finSupp 0 ))
2322simprbi 499 . . . . . . 7 (𝑋𝑈𝑋 finSupp 0 )
248, 23syl 17 . . . . . 6 (𝜑𝑋 finSupp 0 )
255, 1, 2, 16, 6mplelbas 20204 . . . . . . . 8 (𝑌𝑈 ↔ (𝑌 ∈ (Base‘𝑆) ∧ 𝑌 finSupp 0 ))
2625simprbi 499 . . . . . . 7 (𝑌𝑈𝑌 finSupp 0 )
2710, 26syl 17 . . . . . 6 (𝜑𝑌 finSupp 0 )
28 fsuppxpfi 8844 . . . . . 6 ((𝑋 finSupp 0𝑌 finSupp 0 ) → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
2924, 27, 28syl2anc 586 . . . . 5 (𝜑 → ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin)
30 ofmres 7679 . . . . . . 7 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) = (𝑓 ∈ (𝑋 supp 0 ), 𝑔 ∈ (𝑌 supp 0 ) ↦ (𝑓f + 𝑔))
31 ovex 7183 . . . . . . 7 (𝑓f + 𝑔) ∈ V
3230, 31fnmpoi 7762 . . . . . 6 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 ))
33 dffn4 6590 . . . . . 6 (( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ↔ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
3432, 33mpbi 232 . . . . 5 ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))
35 fofi 8804 . . . . 5 ((((𝑋 supp 0 ) × (𝑌 supp 0 )) ∈ Fin ∧ ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))):((𝑋 supp 0 ) × (𝑌 supp 0 ))–onto→ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))) → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3629, 34, 35sylancl 588 . . . 4 (𝜑 → ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) ∈ Fin)
3721, 36eqeltrid 2917 . . 3 (𝜑𝐴 ∈ Fin)
38 eqid 2821 . . . . 5 (Base‘𝑅) = (Base‘𝑅)
39 mplsubrglem.d . . . . 5 𝐷 = {𝑓 ∈ (ℕ0m 𝐼) ∣ (𝑓 “ ℕ) ∈ Fin}
401, 38, 39, 2, 12psrelbas 20153 . . . 4 (𝜑 → (𝑋(.r𝑆)𝑌):𝐷⟶(Base‘𝑅))
41 mplsubrglem.t . . . . . 6 · = (.r𝑅)
429adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑋 ∈ (Base‘𝑆))
4311adantr 483 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑌 ∈ (Base‘𝑆))
44 eldifi 4102 . . . . . . 7 (𝑘 ∈ (𝐷𝐴) → 𝑘𝐷)
4544adantl 484 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑘𝐷)
461, 2, 41, 3, 39, 42, 43, 45psrmulval 20160 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))))
474ad2antrr 724 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑅 ∈ Ring)
485, 38, 6, 39, 10mplelf 20207 . . . . . . . . . . . 12 (𝜑𝑌:𝐷⟶(Base‘𝑅))
4948ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑌:𝐷⟶(Base‘𝑅))
50 ssrab2 4055 . . . . . . . . . . . 12 {𝑦𝐷𝑦r𝑘} ⊆ 𝐷
51 mplsubg.i . . . . . . . . . . . . . 14 (𝜑𝐼𝑊)
5251ad2antrr 724 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐼𝑊)
5345adantr 483 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘𝐷)
54 simpr 487 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 ∈ {𝑦𝐷𝑦r𝑘})
55 eqid 2821 . . . . . . . . . . . . . 14 {𝑦𝐷𝑦r𝑘} = {𝑦𝐷𝑦r𝑘}
5639, 55psrbagconcl 20147 . . . . . . . . . . . . 13 ((𝐼𝑊𝑘𝐷𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5752, 53, 54, 56syl3anc 1367 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ {𝑦𝐷𝑦r𝑘})
5850, 57sseldi 3964 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) ∈ 𝐷)
5949, 58ffvelrnd 6846 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅))
6038, 41, 16ringlz 19331 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌‘(𝑘f𝑥)) ∈ (Base‘𝑅)) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
6147, 59, 60syl2anc 586 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ( 0 · (𝑌‘(𝑘f𝑥))) = 0 )
62 oveq1 7157 . . . . . . . . . 10 ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ( 0 · (𝑌‘(𝑘f𝑥))))
6362eqeq1d 2823 . . . . . . . . 9 ((𝑋𝑥) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ( 0 · (𝑌‘(𝑘f𝑥))) = 0 ))
6461, 63syl5ibrcom 249 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
655, 38, 6, 39, 8mplelf 20207 . . . . . . . . . . . 12 (𝜑𝑋:𝐷⟶(Base‘𝑅))
6665ad2antrr 724 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑋:𝐷⟶(Base‘𝑅))
6750, 54sseldi 3964 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥𝐷)
6866, 67ffvelrnd 6846 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋𝑥) ∈ (Base‘𝑅))
6938, 41, 16ringrz 19332 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑋𝑥) ∈ (Base‘𝑅)) → ((𝑋𝑥) · 0 ) = 0 )
7047, 68, 69syl2anc 586 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · 0 ) = 0 )
71 oveq2 7158 . . . . . . . . . 10 ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = ((𝑋𝑥) · 0 ))
7271eqeq1d 2823 . . . . . . . . 9 ((𝑌‘(𝑘f𝑥)) = 0 → (((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ↔ ((𝑋𝑥) · 0 ) = 0 ))
7370, 72syl5ibrcom 249 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑌‘(𝑘f𝑥)) = 0 → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 ))
7439psrbagf 20139 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑥𝐷) → 𝑥:𝐼⟶ℕ0)
7552, 67, 74syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥:𝐼⟶ℕ0)
7675ffvelrnda 6845 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑥𝑛) ∈ ℕ0)
7739psrbagf 20139 . . . . . . . . . . . . . . . . . 18 ((𝐼𝑊𝑘𝐷) → 𝑘:𝐼⟶ℕ0)
7852, 53, 77syl2anc 586 . . . . . . . . . . . . . . . . 17 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘:𝐼⟶ℕ0)
7978ffvelrnda 6845 . . . . . . . . . . . . . . . 16 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → (𝑘𝑛) ∈ ℕ0)
80 nn0cn 11901 . . . . . . . . . . . . . . . . 17 ((𝑥𝑛) ∈ ℕ0 → (𝑥𝑛) ∈ ℂ)
81 nn0cn 11901 . . . . . . . . . . . . . . . . 17 ((𝑘𝑛) ∈ ℕ0 → (𝑘𝑛) ∈ ℂ)
82 pncan3 10888 . . . . . . . . . . . . . . . . 17 (((𝑥𝑛) ∈ ℂ ∧ (𝑘𝑛) ∈ ℂ) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8380, 81, 82syl2an 597 . . . . . . . . . . . . . . . 16 (((𝑥𝑛) ∈ ℕ0 ∧ (𝑘𝑛) ∈ ℕ0) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8476, 79, 83syl2anc 586 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛))) = (𝑘𝑛))
8584mpteq2dva 5153 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))) = (𝑛𝐼 ↦ (𝑘𝑛)))
86 ovexd 7185 . . . . . . . . . . . . . . 15 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑛𝐼) → ((𝑘𝑛) − (𝑥𝑛)) ∈ V)
8775feqmptd 6727 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑥 = (𝑛𝐼 ↦ (𝑥𝑛)))
8878feqmptd 6727 . . . . . . . . . . . . . . . 16 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 = (𝑛𝐼 ↦ (𝑘𝑛)))
8952, 79, 76, 88, 87offval2 7420 . . . . . . . . . . . . . . 15 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑘f𝑥) = (𝑛𝐼 ↦ ((𝑘𝑛) − (𝑥𝑛))))
9052, 76, 86, 87, 89offval2 7420 . . . . . . . . . . . . . 14 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = (𝑛𝐼 ↦ ((𝑥𝑛) + ((𝑘𝑛) − (𝑥𝑛)))))
9185, 90, 883eqtr4d 2866 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) = 𝑘)
92 simplr 767 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝑘 ∈ (𝐷𝐴))
9391, 92eqeltrd 2913 . . . . . . . . . . . 12 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥f + (𝑘f𝑥)) ∈ (𝐷𝐴))
9493eldifbd 3948 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
95 ovres 7308 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) = (𝑥f + (𝑘f𝑥)))
96 fnovrn 7317 . . . . . . . . . . . . . 14 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ ran ( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))))
9796, 21eleqtrrdi 2924 . . . . . . . . . . . . 13 ((( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 ))) Fn ((𝑋 supp 0 ) × (𝑌 supp 0 )) ∧ 𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9832, 97mp3an1 1444 . . . . . . . . . . . 12 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥( ∘f + ↾ ((𝑋 supp 0 ) × (𝑌 supp 0 )))(𝑘f𝑥)) ∈ 𝐴)
9995, 98eqeltrrd 2914 . . . . . . . . . . 11 ((𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → (𝑥f + (𝑘f𝑥)) ∈ 𝐴)
10094, 99nsyl 142 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
101 ianor 978 . . . . . . . . . 10 (¬ (𝑥 ∈ (𝑋 supp 0 ) ∧ (𝑘f𝑥) ∈ (𝑌 supp 0 )) ↔ (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
102100, 101sylib 220 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
103 eldif 3945 . . . . . . . . . . . . 13 (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ (𝑥𝐷 ∧ ¬ 𝑥 ∈ (𝑋 supp 0 )))
104103baib 538 . . . . . . . . . . . 12 (𝑥𝐷 → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
10567, 104syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) ↔ ¬ 𝑥 ∈ (𝑋 supp 0 )))
106 ssidd 3989 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑋 supp 0 ) ⊆ (𝑋 supp 0 ))
107 ovex 7183 . . . . . . . . . . . . . . 15 (ℕ0m 𝐼) ∈ V
10839, 107rabex2 5229 . . . . . . . . . . . . . 14 𝐷 ∈ V
109108a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 𝐷 ∈ V)
11017a1i 11 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → 0 ∈ V)
11166, 106, 109, 110suppssr 7855 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ 𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 ))) → (𝑋𝑥) = 0 )
112111ex 415 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑥 ∈ (𝐷 ∖ (𝑋 supp 0 )) → (𝑋𝑥) = 0 ))
113105, 112sylbird 262 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ 𝑥 ∈ (𝑋 supp 0 ) → (𝑋𝑥) = 0 ))
114 eldif 3945 . . . . . . . . . . . . 13 ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ((𝑘f𝑥) ∈ 𝐷 ∧ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
115114baib 538 . . . . . . . . . . . 12 ((𝑘f𝑥) ∈ 𝐷 → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
11658, 115syl 17 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) ↔ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )))
117 ssidd 3989 . . . . . . . . . . . . 13 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (𝑌 supp 0 ) ⊆ (𝑌 supp 0 ))
11849, 117, 109, 110suppssr 7855 . . . . . . . . . . . 12 ((((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) ∧ (𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 ))) → (𝑌‘(𝑘f𝑥)) = 0 )
119118ex 415 . . . . . . . . . . 11 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑘f𝑥) ∈ (𝐷 ∖ (𝑌 supp 0 )) → (𝑌‘(𝑘f𝑥)) = 0 ))
120116, 119sylbird 262 . . . . . . . . . 10 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → (¬ (𝑘f𝑥) ∈ (𝑌 supp 0 ) → (𝑌‘(𝑘f𝑥)) = 0 ))
121113, 120orim12d 961 . . . . . . . . 9 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((¬ 𝑥 ∈ (𝑋 supp 0 ) ∨ ¬ (𝑘f𝑥) ∈ (𝑌 supp 0 )) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 )))
122102, 121mpd 15 . . . . . . . 8 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) = 0 ∨ (𝑌‘(𝑘f𝑥)) = 0 ))
12364, 73, 122mpjaod 856 . . . . . . 7 (((𝜑𝑘 ∈ (𝐷𝐴)) ∧ 𝑥 ∈ {𝑦𝐷𝑦r𝑘}) → ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))) = 0 )
124123mpteq2dva 5153 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥)))) = (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 ))
125124oveq2d 7166 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ ((𝑋𝑥) · (𝑌‘(𝑘f𝑥))))) = (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )))
1264adantr 483 . . . . . . 7 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Ring)
127 ringmnd 19300 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
128126, 127syl 17 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → 𝑅 ∈ Mnd)
12939psrbaglefi 20146 . . . . . . 7 ((𝐼𝑊𝑘𝐷) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13051, 44, 129syl2an 597 . . . . . 6 ((𝜑𝑘 ∈ (𝐷𝐴)) → {𝑦𝐷𝑦r𝑘} ∈ Fin)
13116gsumz 17994 . . . . . 6 ((𝑅 ∈ Mnd ∧ {𝑦𝐷𝑦r𝑘} ∈ Fin) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
132128, 130, 131syl2anc 586 . . . . 5 ((𝜑𝑘 ∈ (𝐷𝐴)) → (𝑅 Σg (𝑥 ∈ {𝑦𝐷𝑦r𝑘} ↦ 0 )) = 0 )
13346, 125, 1323eqtrd 2860 . . . 4 ((𝜑𝑘 ∈ (𝐷𝐴)) → ((𝑋(.r𝑆)𝑌)‘𝑘) = 0 )
13440, 133suppss 7854 . . 3 (𝜑 → ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)
135 suppssfifsupp 8842 . . 3 ((((𝑋(.r𝑆)𝑌) ∈ V ∧ Fun (𝑋(.r𝑆)𝑌) ∧ 0 ∈ V) ∧ (𝐴 ∈ Fin ∧ ((𝑋(.r𝑆)𝑌) supp 0 ) ⊆ 𝐴)) → (𝑋(.r𝑆)𝑌) finSupp 0 )
13613, 15, 18, 37, 134, 135syl32anc 1374 . 2 (𝜑 → (𝑋(.r𝑆)𝑌) finSupp 0 )
1375, 1, 2, 16, 6mplelbas 20204 . 2 ((𝑋(.r𝑆)𝑌) ∈ 𝑈 ↔ ((𝑋(.r𝑆)𝑌) ∈ (Base‘𝑆) ∧ (𝑋(.r𝑆)𝑌) finSupp 0 ))
13812, 136, 137sylanbrc 585 1 (𝜑 → (𝑋(.r𝑆)𝑌) ∈ 𝑈)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843  w3a 1083   = wceq 1533  wcel 2110  {crab 3142  Vcvv 3494  cdif 3932  wss 3935   class class class wbr 5058  cmpt 5138   × cxp 5547  ccnv 5548  ran crn 5550  cres 5551  cima 5552  Fun wfun 6343   Fn wfn 6344  wf 6345  ontowfo 6347  cfv 6349  (class class class)co 7150  f cof 7401  r cofr 7402   supp csupp 7824  m cmap 8400  Fincfn 8503   finSupp cfsupp 8827  cc 10529   + caddc 10534  cle 10670  cmin 10864  cn 11632  0cn0 11891  Basecbs 16477  .rcmulr 16560  0gc0g 16707   Σg cgsu 16708  Mndcmnd 17905  Ringcrg 19291   mPwSer cmps 20125   mPoly cmpl 20127
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-ofr 7404  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-2o 8097  df-oadd 8100  df-er 8283  df-map 8402  df-pm 8403  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-3 11695  df-4 11696  df-5 11697  df-6 11698  df-7 11699  df-8 11700  df-9 11701  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-struct 16479  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-mulr 16573  df-sca 16575  df-vsca 16576  df-tset 16578  df-0g 16709  df-gsum 16710  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-grp 18100  df-minusg 18101  df-cntz 18441  df-cmn 18902  df-abl 18903  df-mgp 19234  df-ur 19246  df-ring 19293  df-psr 20130  df-mpl 20132
This theorem is referenced by:  mplsubrg  20214
  Copyright terms: Public domain W3C validator