Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mpst123 Structured version   Visualization version   GIF version

Theorem mpst123 30525
Description: Decompose a pre-statement into a triple of values. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypothesis
Ref Expression
mpstssv.p 𝑃 = (mPreSt‘𝑇)
Assertion
Ref Expression
mpst123 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)

Proof of Theorem mpst123
StepHypRef Expression
1 mpstssv.p . . . 4 𝑃 = (mPreSt‘𝑇)
21mpstssv 30524 . . 3 𝑃 ⊆ ((V × V) × V)
32sseli 3563 . 2 (𝑋𝑃𝑋 ∈ ((V × V) × V))
4 1st2nd2 7074 . . . 4 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st𝑋), (2nd𝑋)⟩)
5 xp1st 7067 . . . . . 6 (𝑋 ∈ ((V × V) × V) → (1st𝑋) ∈ (V × V))
6 1st2nd2 7074 . . . . . 6 ((1st𝑋) ∈ (V × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
75, 6syl 17 . . . . 5 (𝑋 ∈ ((V × V) × V) → (1st𝑋) = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩)
87opeq1d 4340 . . . 4 (𝑋 ∈ ((V × V) × V) → ⟨(1st𝑋), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
94, 8eqtrd 2643 . . 3 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩)
10 df-ot 4133 . . 3 ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩ = ⟨⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋))⟩, (2nd𝑋)⟩
119, 10syl6eqr 2661 . 2 (𝑋 ∈ ((V × V) × V) → 𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
123, 11syl 17 1 (𝑋𝑃𝑋 = ⟨(1st ‘(1st𝑋)), (2nd ‘(1st𝑋)), (2nd𝑋)⟩)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1474  wcel 1976  Vcvv 3172  cop 4130  cotp 4132   × cxp 5026  cfv 5790  1st c1st 7035  2nd c2nd 7036  mPreStcmpst 30458
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1712  ax-4 1727  ax-5 1826  ax-6 1874  ax-7 1921  ax-8 1978  ax-9 1985  ax-10 2005  ax-11 2020  ax-12 2033  ax-13 2233  ax-ext 2589  ax-sep 4703  ax-nul 4712  ax-pow 4764  ax-pr 4828  ax-un 6825
This theorem depends on definitions:  df-bi 195  df-or 383  df-an 384  df-3an 1032  df-tru 1477  df-ex 1695  df-nf 1700  df-sb 1867  df-eu 2461  df-mo 2462  df-clab 2596  df-cleq 2602  df-clel 2605  df-nfc 2739  df-ral 2900  df-rex 2901  df-rab 2904  df-v 3174  df-sbc 3402  df-dif 3542  df-un 3544  df-in 3546  df-ss 3553  df-nul 3874  df-if 4036  df-pw 4109  df-sn 4125  df-pr 4127  df-op 4131  df-ot 4133  df-uni 4367  df-br 4578  df-opab 4638  df-mpt 4639  df-id 4943  df-xp 5034  df-rel 5035  df-cnv 5036  df-co 5037  df-dm 5038  df-rn 5039  df-iota 5754  df-fun 5792  df-fv 5798  df-1st 7037  df-2nd 7038  df-mpst 30478
This theorem is referenced by:  msrf  30527  msrid  30530  mthmpps  30567
  Copyright terms: Public domain W3C validator